Use of Nitrogen-13 and Nitrogen-15 in Studies on the Dissimilatory Fate of Nitrate

  • James M. Tiedje


Nitrate is a central nitrogen species in the biogeochemical nitrogen cycle because it is mobile, a biological oxidant, and a nitrogen source fpr growth for many organisms. As a result it has many competing fates as illustrated in Figure 1.


Nitrous Oxide Sewage Sludge Denitrification Rate Denitrification Loss Dissimilatory Reduction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balderston, W. L., Sherr, B., and Payne, W. J., 1976, Blockage by acetylene of nitrous oxide reduction in Pseudomonas perfectomarinus, Appl. Environ. Microbial., 31:504.Google Scholar
  2. Betlach, M. R., 1979, Accumulation of intermediates during denitrification — kinetic mechanisms and regulation of assimilatory nitrate uptake, Ph.D. Thesis, Michigan State University.Google Scholar
  3. Bollag, J.-M., and Tung, G., 1972, Nitrous oxide release by soil fungi, Soil Biol. Biochem., 4:271.CrossRefGoogle Scholar
  4. Buresh, R. J., and Patrick, Jr., W. H., 1978, Nitrate reduction to ammonium in anaerobic soil, Soil Sci. Soc. Am. J., 42:913.CrossRefGoogle Scholar
  5. Caskey, W. H., and Tiedje, J. M., 1979, Evidence for Clostridia as agents of dissimilatory reduction of nitrate to ammonium in soils, Soil Sci. Soc. Am. J., 43:931.CrossRefGoogle Scholar
  6. Caskey, W-H., and Tiedje, J. M., 1980, The reduction of nitrate to ammonium by a Clostridium sp. isolated from soil, J. Gen. Microbiol., 119:217.PubMedGoogle Scholar
  7. Chen, R. L., Keeney, D. R., Konrad, J. G., Holding, A. J., and Graetz, D. A., 1972, Gas production in sediments of Lake Mendota, Wisconsin, J. Environ. Qual., 1:155.CrossRefGoogle Scholar
  8. Cole, J. A., and Brown, C. M., 1980, Nitrite reduction to ammonia by fermentative bacteria: a short circuit in the biological nitrogen cycle, FEMS Microbiol. Lett., 7:65.CrossRefGoogle Scholar
  9. Dunn, G. M., Herbert, R. A., and Brown, C. M., 1979, Influence of oxygen tension on nitrate reduction by a Klebsiella sp. growing in chemostat culture, J. Gen. Microbiol., 112:379.PubMedGoogle Scholar
  10. Firestone, M. K., Firestone, R. B., and Tiedje, J. M., 1979, Nitric oxide as an intermediate in denitrification: evidence from nitrogen-13 isotope exchange, Biochem. Biophys. Res. Comm., 91:10.PubMedCrossRefGoogle Scholar
  11. Firestone, M. K., Firestone, R. B., and Tiedje, R. M., 1980, Nitrous oxide from soil denitrification: factors controlling its biological production, Science, 208:749.PubMedCrossRefGoogle Scholar
  12. Gamble, T. N., Betlach, M. R., and Tiedje, J. M., 1977, Numerically dominant denitrifying bacteria from world soils, Appl. Environ. Microbiol., 33:926.PubMedGoogle Scholar
  13. Hasan, S. M., and Hall, J. B., 1977, Dissimilatory nitrate reduction in Clostridium tertium, Zeit. Allg. Mikrobiol., 17:501.CrossRefGoogle Scholar
  14. Healey, F. P., 1980, Slope of the Monod equation as an indicator of advantage in nutrient competition, Microb. Ecol., 5:281.CrossRefGoogle Scholar
  15. Kaspar, H. F., and Tiedje, J. M., 1980, Response of electroncapture detector to H2, O2, N2, CO2, NO and N2O, J. Chromatogr., 193:142.CrossRefGoogle Scholar
  16. Koike, J., and Hattori, A., 1978, Denitrification and ammonia formation in anaerobic coastal sediments, Appl. Environ. Microbiol., 35:278.PubMedGoogle Scholar
  17. MacRae, I. D., Ancajar, R. R., and Salandanan, S., 1968, The fate of nitrate nitrogen in some tropical soils following submergence, Soil Sci., 105:327.CrossRefGoogle Scholar
  18. Payne, W. J., 1973, Reduction of nitrogenous oxide by microorganisms, Bacteriol. Rev., 37:409.PubMedGoogle Scholar
  19. St. John, R. T., and Hollocher, T. C., 1977, Nitrogen 15 tracer studies on the pathway of denitrification in Pseudomonas aeruginosa, J. Biol. Chem., 252:212.PubMedGoogle Scholar
  20. Smith, M. S., and Tiedje, J. M., 1979, The effect of roots on soil denitrification, Soil Sci. Soc. Am. J., 43:951.CrossRefGoogle Scholar
  21. Sørensen, J., 1978, Capacity for denitrification and reduction of nitrate to ammonia in a coastal marine sediment, Appl. Environ. Microbiol., 35:301.PubMedGoogle Scholar
  22. Thauer, R. K., Jungermann, K., and Decker, K., 1979, Energy conservation in chemotrophic anaerobic bacteria, Bacteriol. Rev., 41:100.Google Scholar
  23. Tiedje, J. M., Caskey, N. V., Smith, M. S., Bleakley, B. H., and Firestone, R. B., 1979a, Nitrous oxide production by bacteria that reduce nitrate to nitrite, Agron. Abstr.Google Scholar
  24. Tiedje, J. M., Firestone, R. B., Firestone, M. K., Betlach, M. R., Smith, M. S., and Caskey, W. H., 1979b, Methods for the production and use of nitrogen-13 in studies of denitrification, Soil Sci. Soc. Am. J., 43:709.CrossRefGoogle Scholar
  25. Yoshida, T., and Alexander, M., 1970, Nitrous oxide formation by Nitrosomonas europaea and heterotrophic organisms, Soil Sci. Soc. Am. Proc., 34:880.CrossRefGoogle Scholar
  26. Walter, H. M., Keeney, D. R., and Fillery, I. R., 1979, Inhibition of nitrification by acetylene, Soil Sci. Soc. Am. J., 43:195.CrossRefGoogle Scholar
  27. Zumft, W. G., and Vega, J. M., 1979, Reduction of nitrite to nitrous oxide by a cytoplasmic membrane fraction from the marine denitrifier Pseudomonas perfectomarinus, Biochem. Biophys. Acta, 548:484.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • James M. Tiedje
    • 1
  1. 1.Departments of Crop and Soil Sciences and of Microbiology and Public HealthMichigan State UniversityEast LansingUSA

Personalised recommendations