The Physiological Genetics of Denitrification in Pseudomonas

  • Curtis A. Carlson
  • John L. Ingraham


Interest in the fate of soil nitrates is shared by a number of scientific disciplines. This is reflected by the diversity of approaches to the study of nitrate metabolism. An important element in the nitrate budget of the soil is the competition between bacteria and plants for this important and often-limiting nutrient.


Nitrous Oxide Nitrate Reductase Paracoccus Denitrificans Nitrate Metabolism Physiological Genetic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, M. B., and van Niel, C. B., 1952, Experiments on bacterial denitrification, J. Bact., 64:397.PubMedGoogle Scholar
  2. Bryan, B., 1980, “Cell Yield and Energy Characteristics of Denitrification with Pseudomonas stutzeri and Pseudomonas aeruginosa,” Ph.D. Thesis, Univ. of California, Davis.Google Scholar
  3. Carlson, C. A., and Ingraham, J. L., 1980, Structural mutations in nitrate reductase of denitrifying Pseudomonas aeruginosa, Amer. Soc. Microbiol. Abstr., 148.Google Scholar
  4. CAST (Council for Agric. Science and Technology), 1976, “Effect of Increased Nitrogen Fixation on Stratospheric Ozone,” Rep. 53, Iowa State Univ., Ames.Google Scholar
  5. Cole, J. A., 1978, The rapid accumulation of large quantities of ammonia during nitrite reduction by Escherichia coli, FEMS Microbiol. Lett., 4:327.CrossRefGoogle Scholar
  6. Firestone, M. K., Firestone, R. B., and Tiedje, J. M., 1979, Nitric oxide as an intermediate in denitrification: evidence from nitrogen-13 isotope exchange, Biochem. Biophys. Res. Comm., 91:10.PubMedCrossRefGoogle Scholar
  7. Firestone, M. K., Firestone, R. B., and Tiedje, J. M., 1980, Nitrous oxide from soil denitrification: factors controlling its biological production, Science, 208:749.PubMedCrossRefGoogle Scholar
  8. Focht, D. D., and Verstraete, W., 1977, Biochemical ecology of nitrification and denitrification, Adv. Microbiol. Ecol., 1:135.Google Scholar
  9. Gamble, T. N., Betlach, M. R., and Tiedje, J. M., 1977, Numerically dominant denitrifying bacteria from world soils, Appl. Environ. Microbiol., 33:926.PubMedGoogle Scholar
  10. Garcia, J.-L., Pichinoty, F., Mandel, M., and Greenway, B., 1977, A new denitrifying saprophyte related to Pseudomonas pickettii, Ann. Microbiol. (Inst. Pasteur), 128B:243.Google Scholar
  11. Greenberg, E. P., and Becker, G. E., 1977, Nitrous oxide as end product of denitrification by strains of fluorescent pseudomonads, Can. J. Microbiol., 23:903.PubMedCrossRefGoogle Scholar
  12. Hansen, E. J., 1972, “Denitrification by Spirillum itersonii,” M.Sc. Thesis, University of Iowa, Iowa City.Google Scholar
  13. Hart, L. T., Larson, P. D., and McCleskey, C., 1965, Denitrification by Corynebacterium nephridii, J. Bact., 89:1104.PubMedGoogle Scholar
  14. Hollocher, T. C., Garber, E., Cooper, A. J. L., and Reiman, R. E., 1980, 13N, l5N isotope and kinetic evidence against hyponitrite as an intermediate in denitrification, J. Biol. Chem., 255:5027.PubMedGoogle Scholar
  15. Holloway, B. W., Krishnapillai, V., and Morgan, A. F., 1979, Chromosomal genetics of Pseudomonas, Microbiol. Rev., 43:73.PubMedGoogle Scholar
  16. Hutchinson, G. L., and Moiser, A. R., 1979, Nitrous oxide emissions from an irrigated cornfield, Science, 205:1125.PubMedCrossRefGoogle Scholar
  17. Kristjansson, J. K., and Hollocher, T. C., 1980, First practical assay for soluble nitrous oxide reductase of denitrifying bacteria and a partial kinetic characterization, J. Biol. Chem., 255:704.PubMedGoogle Scholar
  18. Matsubara, T., 1971, Studies on denitrification, XIII, Some properties of the N2O-anaerobically grown cell, J. Biochem., 69:991.PubMedGoogle Scholar
  19. Meynell, G. G., and Meynell, E., 1970, “Theory and Practice in Experimental Bacteriology,” Cambridge Univ. Press, Cambridge.Google Scholar
  20. Neyra, C. A., Dobereiner, J., Lalande, R., and Knowles, R., 1977, Denitrification by N2-fixing Spirillum lipoferum, Can. J. Microbiol., 23:300.PubMedCrossRefGoogle Scholar
  21. Paraskeva, C., 1979, Transfer of kanamycin resistance mediated by Plasmid R68.45 in Paracoccus denitrificans, J. Bacteriol., 139:1062.PubMedGoogle Scholar
  22. Payne, W. J., 1973, Reduction of nitrogenous oxides by microorganisms, Bact. Rev., 37:489.Google Scholar
  23. Payne, W. J., Riley, P. S., and Cox, C. D., 1971, Separate nitrite, nitric oxide, and nitrous oxide reducing fractions from Pseudomonas perfectomarinus, J. Bact., 106:356.PubMedGoogle Scholar
  24. Pichinoty, F., de Barjac, H., Mandel, M., Greenway, B., and Garcia, J.-L., 1976a, Une novelle bactérie sporulée, denitrificante, mésophile: Bacillus azotoformans n. sp., Ann. Microbiol., 127B:351.Google Scholar
  25. Pichinoty, F., Bigliardi-Rouvier, J., Mandel, M., Greenway, B., Meténier, G., and Garcia, J.-L., 1976b, The isolation and properties of a denitrifying bacterium of the genus Flavobacterium, Antonie van Leeuwenhoek, 42:349.PubMedCrossRefGoogle Scholar
  26. Pichinoty, F., Mandel, M., and Garcia, J.-L., 1977a, Etude de six souches de Agrobacterium temefaciens et A. radiobacter, Ann. Microbiol. (Inst. Pasteur), 128A:303.Google Scholar
  27. Pichinoty, F., Mandel, M., and Garcia, J.-L., 1977b, Etude physiologique et taxonomique de Paracoccus denitrificans, Ann. Microbiol. (Inst. Pasteur), 128B:243.Google Scholar
  28. Pichinoty, F., Mandel, M., Greenway, B., and Garcia, J.-L., 1977c, Isolation and properties of a denitrifying bacterium related to Pseudomonas lemoignei, Int. J. System. Bacteriol., 27:346.CrossRefGoogle Scholar
  29. Pichinoty, F., Mandel, M., Greenway, B., and Garcia, J.-L., 1975, Isolement à partir du sol et étude d’une bactérie dénitrifiante appartenant au genre Alcaligenes, C. R. Acad. Sc. Paris, T. 381 (Série D):1273.Google Scholar
  30. St. John, R. T., and Hollocher, T. C., 1977, Nitrogen-15 tracer studies on the pathway of denitrification in Pseudomonas aeruginosa, J. Biol. Chem., 252:212.PubMedGoogle Scholar
  31. Sias, S. R., and Ingraham, J. L., 1979, Isolation and analysis of mutants of Pseudomonas aeruginosa unable to assimilate nitrate, Arch. Microbiol., 122:263.PubMedCrossRefGoogle Scholar
  32. Sias, S. R., and Ingraham, J. L., 1980, Chromosomal location in Pseudomonas aeruginosa of genes encoding assimilatory nitrate reductase, J. Bact., in press.Google Scholar
  33. Sias, S. R., Stouthamer, A. H., and Ingraham, J. L., 1980, Assimilatory and dissimilatory nitrate reductases in Pseudomonas aeruginosa are encoded by different genes, J. Gen. Microbiol., 118:229.PubMedGoogle Scholar
  34. Sorsensen, J., Tiedje, J. M., and Firestone, R. B., 1980, Inhibition by sulfide of nitric and nitrous oxide reduction by denitrifying Pseudomonas fluorescens, Appl. Environ. Microbiol., 39:105.Google Scholar
  35. Stouthamer, A. H., 1976, Biochemistry and genetics of nitrate reductase in bacteria, Adv. Microbiol. Physiol., 14:315.CrossRefGoogle Scholar
  36. van Hartingsveldt, J., Marinus, M. G., Stouthamer, A. H., 1971, Mutants of Pseudomonas aeruginosa blocked in nitrate or nitrite dissimilation, Genetics, 67:469.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Curtis A. Carlson
    • 1
  • John L. Ingraham
    • 1
  1. 1.Department of BacteriologyUniversity of CaliforniaDavisUSA

Personalised recommendations