Advertisement

Physiological Studies on N2-Fixing Azolla

  • G. A. Peters
  • O. Ito
  • V. V. S. Tyagi
  • D. Kaplan

Abstract

Azolla, a genus of heterosporous aquatic ferns generally included in the Salviniaceae, is widely distributed in tropical and temperate fresh-water ecosystems. Members of the genus are capable of growth in environments deficient in combined nitrogen since they invariably contain an N2-fixing cyanophyte which can provide their total N requirements. The current interest and potential of these N2-fixing associations as an alternative N source in rice culture, as well as their long time usage for this purpose in the Far East, is well documented (Moore, 1969; Tuan and Thuyet, 1979; Liu, 1979; Singh, 1979; Rains and Talley, 1979; Talley and Rains, 1980; Watanabe et al., 1977).

Keywords

Action Spectrum Acetylene Reduction Activity Anabaena Variabilis Nitrogen Fixation Rate C2H2 Reduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Becking, J. H., 1979, Environmental requirements of Azolla for use in tropical rice production, in: “Proc. Intern. Rice Res. Inst., Nitrogen and Rice,” IRRI, Los Bańos, Laguna, Philippines.Google Scholar
  2. Bottomley, P. J., and Stewart, W. D. P., 1977, ATP and nitrogenase activity in nitrogen fixing heterocystous blue-green algae, New Phytol., 79:625.CrossRefGoogle Scholar
  3. Calvert, H. E., and Peters, G. A., 1979, New morphological observations on the Azolla caroliniana-Anabaena symbiosis relevant to physiological interaction, Plant Physiol, S5:113.Google Scholar
  4. Decker, J. P., 1957, Further evidence of increased carbon dioxide production accompanying photosynthesis, J. Solar Energy Sci. Eng., 1:30.CrossRefGoogle Scholar
  5. Duckett, J. R., Toth, R., and Soni, S. L., 1975, An ultrastructural study of the Azolla-Anabaena azollae relationship, New Phytol., 75:111.CrossRefGoogle Scholar
  6. Haselkorn, R., 1978, Heterocysts, Ann. Rev. Plant Physiol., 29:319.CrossRefGoogle Scholar
  7. Hill, D. J., 1975, The pattern of development of Anabaena in the Azolla-Anabaena symbiosis, Planta, 122:179.CrossRefGoogle Scholar
  8. Hill, D. J., 1977, The role of Anabaena in the Azolla-Anabaena symbiosis, New Phytol., 78:611.CrossRefGoogle Scholar
  9. Liu, C. C., 1979, Use of Azolla in rice production in China, in: “Proc. Intern. Rice Res. Inst., Nitrogen and Rice,” IRRI, Los Baños, Laguna, Philippines.Google Scholar
  10. Moore, A. W., 1969, Azolla: Biology and agronomic significance, Bot. Rev., 35:17.CrossRefGoogle Scholar
  11. Newton, J. W., 1976, Photoproduction of molecular hydrogen by a plant-algal symbiotic system, Science, 191:559.PubMedCrossRefGoogle Scholar
  12. Peters, G. A., 1977, The Azolla-Anabaena azollae symbiosis, in: “Genetic Engineering for Nitrogen Fixation,” A. Hollaender, ed., Plenum Press, New York.Google Scholar
  13. Peters, G. A., Evans, W. R., and Toia, R. E., Jr., 1976, Azolla-Anabaena azollae relationship. IV. Photosynthetically driven nitrogenase-catalyzed H2 production, Plant Physiol., 58:119.PubMedCrossRefGoogle Scholar
  14. Peters, G. A., and Mayne, B. C., 1974a, The Azolla-Anabaena azollae relationship. I. Initial characterization of the association, Plant Physiol., 53:813.PubMedCrossRefGoogle Scholar
  15. Peters, G. A., and Mayne, B. C., 1974b, The Azolla-Anabaena azollae relationship. II. Localization of nitrogenase activity as assayed by acetylene reduction, Plant Physiol., 53:820.PubMedCrossRefGoogle Scholar
  16. Peters, G. A., Mayne, B. C., Ray, T. B., and Toia, R. E., Jr., 1979, Physiology and biochemistry of the Azolla-Anabaena symbiosis, in.: “Proc. Intern. Rice Res. Inst., Nitrogen and Rice,” IRRI, Los Baños, Laguna, Philippines.Google Scholar
  17. Peters, G. A., Ray, T. B., Mayne, B. C., and Toia, R. E., Jr., 1980a, Azolla-Anabaena association: Morphological and physiological studies, in: “Nitrogen Fixation, Vol., II, Symbiotic Associations and Cyanobacteria,” W. E. Newton and W. H. Orme-Johnson, eds., University Park Press, Baltimore.Google Scholar
  18. Peters, G. A., Toia, R. E., Jr., and Lough, S. M., 1977, Azolla-Anabaena azollae relationship. V. 15N2 fixation, acetylene reduction and H2 production, Plant Physiol., 59:1021.PubMedCrossRefGoogle Scholar
  19. Peters, G. A., Toia, R. E., Jr., Raveëd, D., and Levine, N. J., 1978, The Azolla-Anabaena azollae relationship. VI. Morphological aspects of the association, New Phytol., 80:583.CrossRefGoogle Scholar
  20. Peters, G. A., Toia, R. E., Jr., Evans, W. R., Crist, D. K., Mayne, B. C., and Poole, R. E., 1980b, Characterization and comparisons of five N2 fixing Azolla-Anabaena associations. I. Optimization of growth conditions for biomass increase and N content in a controlled environment, Plant, Cell Environ., in press.Google Scholar
  21. Peterson, R. B., and Burris, R. H., 1978, Hydrogen metabolism in isolated heterocysts of Anabaena 7120, Arch. Microbiol., 116:125.CrossRefGoogle Scholar
  22. Peterson, R. B., and Ke, B., 1979, Presence of phycobilins in heterocysts isolated from Anabaena variabilis, Plant Physiol., S5:28.Google Scholar
  23. Rains, D. W., and Talley, S. N., 1979, Use of Azolla in North America, in: “Proc. Intern. Rice Res. Inst., Nitrogen and Rice,” IRRI, Los Baños, Laguna, Philippines.Google Scholar
  24. Ray, T. B., Peters, G. A., Toia, R. E., Jr., and Mayne, B. C., 1978, The Azolla-Anabaena relationship. VII. Distribution of ammonia-assimilating enzymes, protein, and chlorophyll between host and symbiont, Plant Physiol., 62:463.PubMedCrossRefGoogle Scholar
  25. Ray, T. B., Mayne, B. C., Toia, R. E., Jr., and Peters, G. A., 1979, The Azolla-Anabaena relationship. VIII. Photosynthetic characterization of the association and individual partners, Plant Physiol., 64:791.PubMedCrossRefGoogle Scholar
  26. Scherer, S., Kerfin, W., and Böger, P., 1980, Regulatory effect of hydrogen on nitrogenase activity of the blue-green alga (cyanobacterium) Nostoc muscorum, J. Bacteriol., 141:1037.PubMedGoogle Scholar
  27. Schubert, K. R., and Evans, H. J., 1976, Hydrogen evolution: a major factor affecting the efficiency of nitrogen fixation in nodulated symbionts, Proc. Natl. Acad. Sci. USA, 73:1207.PubMedCrossRefGoogle Scholar
  28. Shi, T. C., Li, C. K., Wang, F. C., Chung, C. P., Chu, L. P., and Peters, G. A., 1980, Studies on nitrogen fixation and photosynthesis in Azolla imbricata (Roxb.) and Azolla filiculoides Lam., Acta Botanica Sinica, in press (in Chinese).Google Scholar
  29. Singh, P. K., 1979, Use of Azolla in rice production in India, in: “Proc. Intern. Rice Res. Inst., Nitrogen and Rice,” IRRI, Los Baños, Laguna, Philippines.Google Scholar
  30. Smith, L. A., Hill, S., and Yates, M. G., 1976, Inhibition by acetylene of conventional hydrogenase in nitrogen-fixing bacteria, Nature, 262:209.PubMedCrossRefGoogle Scholar
  31. Stewart, W. D. P., 1977, A botanical ramble among the blue-green algae, Br. Phycol. J., 12:89.CrossRefGoogle Scholar
  32. Stewart, W. D. P., Rowell, P., Ladha, J. K., and Sampaio, M. J. A. M., 1979, Blue-green algae (cyanobacteria)-some aspects related to their role as sources of fixed nitrogen in paddy soils, in: “Proc. Intern. Rice Res. Inst., Nitrogen and Rice,” IRRI, Los Baños, Laguna, Philippines.Google Scholar
  33. Talley, S. N., and Rains, D. W., 1980, Azolla filiculoides Lam. as a fallow-season green manure for rice in temperate climate, Agronomy J., 72:11.CrossRefGoogle Scholar
  34. Tel-Or, E., and Stewart, W. D. P., 1977, Photosynthetic components and activities of nitrogen-fixing isolated heterocysts of Anabaena cylindrica, Proc. R. Soc. London Ser. B., 198:61.CrossRefGoogle Scholar
  35. Thomas, J., 1970, Absence of the pigments of photosystem II of photosynthesis in heterocysts of a blue-green alga, Nature, 258:715.Google Scholar
  36. Tuan, D. T., and Thuyet, T. Q., 1979, Use of Azolla in rice production in Vietnam, in: “Proc. Intern. Rice Res. Inst., Nitrogen and Rice,” IRRI, Los Baños, Laguna, Philippines.Google Scholar
  37. Tyagi, V. V. S., Mayne, B. C., and Peters, G. A., 1980a, Action spectra of acetylene reduction in the Azolla-Anabaena association and in the isolated endophyte, Plant Physiol., SGoogle Scholar
  38. Tyagi, V. V. S., Mayne, B. C., and Peters, G. A., 1980b, Purification and initial characterization of phycobiliproteins from the endophytic cyanobacterium of Azolla, Arch. Microbiol., in press.Google Scholar
  39. Wang, T. C., Stevens, C. R. L., and Myers, J., 1977, Action spectra for photoreactions I and II of photosynthesis in the bluegreen alga Anacystis nidulans, Photochem. Photobiol., 25:103.CrossRefGoogle Scholar
  40. Watanabe, I., Espinas, C. R., Berja, N. S., and Alimagno, C. B., 1977, Utilization of the Azolla-Anabaena complex as a nitrogen fertilizer for rice, International Rice Research Institute Research Paper Series, 11:1.Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • G. A. Peters
    • 1
  • O. Ito
    • 1
  • V. V. S. Tyagi
    • 1
  • D. Kaplan
    • 1
  1. 1.Charles F. Kettering Research LaboratoryYellow SpringsUSA

Personalised recommendations