Physiological Interactions Between Alaska Peas and Strains of Rhizobium Leguminosarum that Differ in Plasmid-Linked Genes

  • T. M. DeJong
  • N. J. Brewin
  • D. A. Phillips


Recent advances in Rhizobium genetics have led to increased optimism regarding the possibility of enhancing symbiotic N2 fixation by generating superior strains of Rhizobium that combine the best attributes from different parental strains. The procedures for developing such strains involve the identification of desired traits, the genetic marking and mapping of such traits, and the transfer of the traits with their markers to another strain which already has desirable traits of a different nature. Since at least some of the genetic information that codes for both root infectivity and nodule effectiveness appears to be located on Plasmids in Rhizobium species (Higashi, 1967; Duncan et al., 1967; Nuti et al., 1979; Johnston et al., 1978; Brewin et al., dy1980a,b;) it may be possible to develop “superior” Rhizobium strains by plasmid transfers between strains.


Field Isolate Rhizobium Strain Bacteriocin Production Rhizobium Leguminosarum Plasmid Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bethlenfalvay, G. J., and Phillips, D. A., 1977, Ontogenetic interactions between photosynthesis and symbiotic nitrogen fixation in legumes, Plant Physiol., 60:419.PubMedCrossRefGoogle Scholar
  2. Brewin, N. J., Beringer, J. E., Buchanan-Wollaston, A. F., Johnston, A. W. B., and Hirsch, P. R., 1980a, Transfer of symbiotic genes with bacteriocinogenic plasmids of Rhizobium leguminosarum, J. Gen. Microbiol., 116:261.Google Scholar
  3. Brewin, N. J., Beringer, J. E., and Johnston, A. W. B., 1980b, Plasmid-mediated transfer of host range specificity between two strains of Rhizobium leguminosarum, J. Gen. Microbiol., in press.Google Scholar
  4. Bromfield, E. S. P., and Jones, D. G., 1919, The competitive ability and symbiotic effectiveness of doubly labeled antibiotic resistant mutants of Rhizobium trifolii, Ann. Appl. Biol., 91:211.CrossRefGoogle Scholar
  5. Buchanan-Wollaston, A. V., Beringer, J. E., Brewin, N. J., Hirsch, P. R., and Johnston, A. W. B., 1980, Identification of sym-biotically defective mutants by insertion of the transposon Tn5 into a transmissible plasmid, Mol. Gen. Genet., 178:185.CrossRefGoogle Scholar
  6. Burris, R. H., and Wilson, P. W., 1957, Methods for measurement of nitrogen fixation, in: “Methods in Enzymology,” S. P. Colowick and N. O. Kaplan, eds., Academic Press, New York.Google Scholar
  7. Dunican, L. K., O’Gara, F., and Tierney, A. B., 1976, Plasmid control of effectiveness in Rhizobium: transfer of nitrogen-fixing genes on a plasmid from Rhizobium trifolii to Klebsiella aerogenes, in: “Symbiotic Nitrogen Fixation in Plants,” P. S. Nutman, ed., Cambridge University Press, Cambridge.Google Scholar
  8. Hagedorn, C., 1979, Relationship of antibiotic resistant to effectiveness in Rhizobium trifolii populations, Soil Sci. Soc. Amer. J., 43:921.CrossRefGoogle Scholar
  9. Higashi, S., 1967, Transfer of clover infectivity of Rhizobium trifolii to Rhizobium phaseoli as mediated by an episomic factor, J. Gen. Appl. Microbiol., 13:391.CrossRefGoogle Scholar
  10. Hirsch, P. R., 1979, Plasmid-determined bacteriocin production by Rhizobium leguminosarum, J. Gen. Microbiol., 113:219.Google Scholar
  11. Hirsch, P. R., Johnston, A. W. B., Brewin, N. J., Van Montagu, M., and Schell, J., 1980, Physical identification of bacterio-cinogenic, nodulation and other plasmids in strains of Rhizobium leguminosarum, J. Gen. Microbiol., in press.Google Scholar
  12. Johnson, C. M., Stout, P. R., Broyer, T. C., and Carlton, A. B., 1957, Comparative chlorine requirements of different plant species, Plant Soil, 8:337.CrossRefGoogle Scholar
  13. Johnston, A. W. B., and Beringer, J. E., 1975, Identification of the Rhizobium strains in pea root nodules using genetic markers, J. Gen. Microbiol., 87:343.PubMedGoogle Scholar
  14. Johnston, A. W. B., Beynon, J. L., Buchanan-Wollaston, A. V., Setchell, S. M., Hirsch, P. R., and Beringer, J. E., 1978, High frequency transfer of nodulating ability between strains and species of Rhizobium, Nature, 276:635.CrossRefGoogle Scholar
  15. Josey, D. P., Beynon, J. L., Johnston, A. W. B., and Beringer, J. E., 1979, Strain identification in Rhizobium using intrinsic antibiotic resistance, J. Appl. Bact., 46:343.CrossRefGoogle Scholar
  16. Leonard, L. T., 1943, A simple assembly for use in testing of cultures of rhizobia, J. Bact., 45:523.PubMedGoogle Scholar
  17. Nuti, M. P., Lepidi, A. A., Prakash, R. K., Schilperoort, R. A., and Cannon, F. C., 1979, Evidence for nitrogen fixation (nif) genes on indigenous Rhizobium plasmids, Nature, 282:533.CrossRefGoogle Scholar
  18. Pankhurst, C. E., 1977, Symbiotic effectiveness of antibiotic-resistant mutants of fast—and slow-growing strains of Rhizobium nodulating Lotus species, Can. J. Microbiol., 23:1026.PubMedCrossRefGoogle Scholar
  19. Pate, J. S., Layzell, D. B., and Atkins, C. A., 1979, Economy of carbon and nitrogen in a nodulated and non-nodulated (NO3-grown) legume, Plant Physiol., 64:1083.PubMedCrossRefGoogle Scholar
  20. Phillips, D. A., Newell, K. D., Hassell, S. A., and Felling, C. E., 1976, The effect of CO2 enrichment on root nodule development and symbiotic N2 reduction in Pisum sativum L., Amer. J. Bot., 63:356.CrossRefGoogle Scholar
  21. Schwinghamer, E. A., 1964, Association between antiboitic resistance and ineffectiveness in mutant strains of Rhizobium spp., Can. J. Microbiol., 10:221.PubMedCrossRefGoogle Scholar
  22. Schwinghamer, E. A., 1967, Effectiveness of Rhizobium as modified by mutation for resistance to antibiotics, Antonie van Leeuwenhoek, 33:122.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • T. M. DeJong
    • 1
  • N. J. Brewin
    • 2
  • D. A. Phillips
    • 1
  1. 1.Dept. of Agronomy & Range ScienceUniversity of CaliforniaDavisUSA
  2. 2.Dept. of GeneticsJohn Innes InstituteNowwichUK

Personalised recommendations