Chemolithotrophy in Rhizobium

  • H. J. Evans
  • J. E. Lepo
  • F. J. Hanus
  • K. Purohit
  • S. A. Russell


The first pure cultures of Rhizobium species were described by Beijerinck in 1888 who surface disinfected nodules from Vicia, Lathrus and Trifolium and cultured the nodule endophytes on gelatin plates containing plant extracts, sucrose, and asparagine. Since this pioneering discovery, Rhizobium species have been considered chemoorganotrophs and always have been supplied with carbon substrates such as hexoses, pentoses, or complex carbohydrates (Vincent, 1978).


Nitrogen Fixation Hydrogenase Activity Rhizobium Species Japonicum Strain RuBP Carboxylase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albrecht, S. L., Maier, R. J., Hanus, F. J., Russell, S. A., Emerich, D. W., and Evans, H. J., 1979, Hydrogenase in R. japonicum increases nitrogen fixation by nodulated soybeans, Science, 203:1255.PubMedCrossRefGoogle Scholar
  2. Anand, S. R., and Krasna, A. I., 1965, Catalysis of the H2-HTO exchange by hydrogenase: A new assay for hydrogenase, Biochemistry, 4:2747.PubMedCrossRefGoogle Scholar
  3. Anderson, K., Shanmugam, K. T., Lim, S. T., Csonka, L. N., Tait, R., Hennecke, H., Scott, D. B., Hom, S. S. M., Haury, J. F., Valentine, A., and Valentine, R. C., 1980, Genetic engineering in agriculture with emphasis on nitrogen fixation, Trends in Biochem. Sci., 5:35.CrossRefGoogle Scholar
  4. Arp, D. J., and Burris, R. H., 1979, Purification and properties of the particulate hydrogenase from the bacteroids of soybean root nodules, Biochim. Biophys. Acta, 570:221.PubMedGoogle Scholar
  5. Beijerink, M. W., 1888, Die Bacterien der Papilionaceenknöilchen, Botanische Zeitung, 45:725.Google Scholar
  6. Bethlenfalvay, G. J., and Phillips, D. A., 1979, Variation in nitrogenase and hydrogenase activity of Alaska pea root nodules, Plant Physiol., 63:816.PubMedCrossRefGoogle Scholar
  7. Christeller, J. T., Laing, W. A., and Sutton, W. D., 1977, Carbon dioxide fixation by lupin root nodules. I. Characterization, association with phosphoenolpyruvate carboxylase, and correlation with nitrogen fixation during nodule development, Plant Physiol., 60:47.PubMedCrossRefGoogle Scholar
  8. DeHertogh, A. A., Mayeux, P., and Evans, H. J., 1964, The relationship of cobalt requirement to propionate metabolism in Rhizobium, J. Biol. Chem., 239:2446.PubMedGoogle Scholar
  9. Dixon, R. O. D., 1968, Hydrogenase in pea root nodule bacteroids, Arch. Microbiol., 62:272.CrossRefGoogle Scholar
  10. Dixon, R. O. D., 1972, Hydrogenase in legume root nodule bacteroids: Occurrence and properties, Arch. Microbiol., 85:193.CrossRefGoogle Scholar
  11. Dixon, R. O. D., 1978, Nitrogenase-hydrogenase interrelationships in rhizobia, Biochimie., 60:233.PubMedCrossRefGoogle Scholar
  12. Emerich, D. W., Albrecht, S. L., Russell, C. A., Ching, T. M., and Evans, H. J., 1980a, Oxyleghemoglobin-mediated H2 oxidation by R. japonicum. USDA 122 DES bacteroids, Plant Physiol., 65:605.PubMedCrossRefGoogle Scholar
  13. Emerich, D. W., Ruiz-Argüeso, T., Ching, T. M., and Evans, H. J., 1979, Hydrogen-dependent nitrogenase activity and ATP formation in R. japonicum bacteroids, J. Bacteriol., 137:153.PubMedGoogle Scholar
  14. Emerich, D. W., Ruiz-Argüeso, T., Russell, S. A., and Evans, H. J., 1980b, Investigations of the H2 oxidation system in Rhizobium japonicum (122 DES) nodule bacteroids, Plant Physiol., accepted.Google Scholar
  15. Evans, H. J., Emerich, D. W., Lepo, J. E., Maier, R. J., Carter, K. R., Hanus, F. J., and Russell, S. A., 1980a, The role of hydrogenase in nodule bacteroids and free-living rhizobia, in: “International Symposium on Nitrogen Fixation,” W. D. P. Stewart and J. R. Gallon, eds., Academic Press, London, in press.Google Scholar
  16. Evans, H. J., Emerich, D. W., Ruiz-Argüeso, T., Albrecht, S. L., Maier, R. J., Simpson, F., and Russell, S. A., 1978, Hydrogen metabolism in legume nodules and rhizobia: Some recent developments, in: “Hydrogenases: Their Catalytic Activity, Structure, and Function,” H. G. Schlegel and K. Schneider, eds., Erich Goltze KG, Gottingen.Google Scholar
  17. Evans, H. J., Emerich, D. W., Ruiz-Argüeso, T., Maier, R. J., and Albrecht, S. L., 1980b, Hydrogen metabolism in the legume rhizobium symbiosis, in: “Nitrogen Fixation: Symbiotic Associations and Cyanobacteria,” Vol. II, W. H. Orne-Johnson and W. E. Newton, eds., University Park Press, Baltimore.Google Scholar
  18. Hanus, F. J., Maier, R. J., and Evans, H. J., 1979, Autotrophic growth of H2−uptake positive strains of R. japonicum in an atmosphere supplied with hydrogen gas, Proc. Natl. Acad. Sci., 76:1788.PubMedCrossRefGoogle Scholar
  19. Jackson, E. K., and Evans, H. J., 1966, Propionate in heme biosynthesis in soybean nodules, Plant Physiol., 41:1673.PubMedCrossRefGoogle Scholar
  20. Laing, W. A., Christeller, J. T., and Sutton, W. D., 1979, Carbon dioxide fixation by lupin root nodules. II. Studies with 14C−labeled glucose, the pathway of glucose catabolism and the effects of some treatments that inhibit nitrogen fixation, Plant Physiol., 63:450.PubMedCrossRefGoogle Scholar
  21. Lawrie, A. C., and Wheeler, C. T., 1975, Nitrogen fixation in the root nodules of Vicia faba L. in relation to the assimilation of carbon. I. Plant growth and metabolism of photosynthetic assimilates, New Phytologist, 74:429.CrossRefGoogle Scholar
  22. Lepo, J. E., Hanus, F. J., and Evans, H. J., 1980, Further studies on the chemautotrophic growth of hydrogen uptake positive strains of R. japonicum, J. Bacteriol., 141:664.PubMedGoogle Scholar
  23. Lim, S. T., 1978, Determination of hydrogenase in free-living cultures of Rhizobium japonicum and energy efficiency of soybean nodules, Plant Physiol., 62:609.PubMedCrossRefGoogle Scholar
  24. Lim, S. T., Hennecke, H., and Scott, D. B., 1969, Effect of cyclic guanosine 3′, 5′-monophosphate on nitrogen fixation in R. japonicum, J. Bacteriol., 139:256.Google Scholar
  25. Lim, S. T., and Shanmugam, K. T., 1969, Regulation of hydrogen utilization in Rhizobium japonicum by cyclic AMP, Biochim. Biophys. Acta, 584:479.CrossRefGoogle Scholar
  26. Lowe, R. H., and Evans, H. J., 1962, Carbon dioxide requirement for growth of legume nodule bacteria, Soil Sci., 94:351.CrossRefGoogle Scholar
  27. Maier, R. J., 1980, Rhizobium japonicum mutant strains unable to grow chemoautotrophically with H2, in: “Abstracts of the Annual Meeting of the American Society for Microbiology,” R. A. Finkelstein, ed., American Society of Microbiology, Washington, DC.Google Scholar
  28. Maier, R. J., Campbell, N. E. R., Hanus, F. J., Simpson, F. B., Russell, S. A., and Evans, H. J., 1978a, Expression of hy-drogenase activity in free-living R. japonicum, Proc. Natl. Acad. Sci., 75:3258.PubMedCrossRefGoogle Scholar
  29. Maier, R. J., Hanus, F. J., and Evans, H. J., 1969, Regulation of hydrogenase in R. japonicum, J. Bacteriol., 137:824.Google Scholar
  30. Maier, R. J., Postgate, J. R., and Evans, H. J., 1978b, Mutants of R. japonicum unable to utilize hydrogen, Nature, 276:494.CrossRefGoogle Scholar
  31. Maruyama, Y., 1975, Studies on symbiotic nitrogen fixation: Nitrogen-fixing and hydrogenase activities in extracts of legume root nodules, in: “Nitrogen Fixation and Nitrogen Cycle,” H. Takahashi, ed., University of Tokyo Press, Tokyo.Google Scholar
  32. Maruyama, Y., Onodera, K., and Funahashi, S., 1967, Nitrogen and hydrogen fixation in extracts of legume root nodules, in: “Abstracts of VII Intern. Congr. Biochem.,” J52, Tokyo.Google Scholar
  33. McCrae, R. E., Hanus, F. J., and Evans, H. J., 1978, Properties of the hydrogenase system in Rhizobium japonicum bacteroids, Biochem. Biophys. Res. Comm., 80:384.PubMedCrossRefGoogle Scholar
  34. Mulder, E. G., and Veen, W. L. van, 1960, The influence of carbon dioxide on symbiotic nitrogen fixation, Plant and Soil, 13:265.CrossRefGoogle Scholar
  35. Peterson, J. B., and Evans, H. J., 1979, Phosphoenolpyruvate carboxylase from soybean nodule cytosol: Evidence for isoenzymes and kinetics of the most active component, Biochim. Biophys. Acta, 567:445.PubMedGoogle Scholar
  36. Phelps, A. S., and Wilson, P. W., 1941, Occurrence of hydrogenase in nitrogen fixing organisms, Proc. Soc. Exp. Biol., 47:473.Google Scholar
  37. Probst, I., and Schlegel, H. G., 1976, Respiratory components and oxidase activities in Alcaligenes eutrophus, Biochim. Biophys. Acta, 440:412.PubMedCrossRefGoogle Scholar
  38. Purohit, K., and Evans, H. J., 1980, D-Ribulose 1, 5-bisphosphate carboxylase/oxygenase from autotrophically grown Rhizobium japonicum, in: “Abstracts of American Society of Plant Physiologists Meeting at Washington State University, Pullman, Washington,” American Society of Plant Physiologists, Bethesda.Google Scholar
  39. Rittenberg, S. C., 1969, The roles of exogenous organic matter in the physiology of chemolithotrophic bacteria, in: “Advances in Microbial Physiology,” Vol. 3, A. H. Rose and J. F. Wilkinson, eds., Academic Press, London.Google Scholar
  40. Ruiz-Argüeso, T., Emerich, D. W., and Evans, H. J., 1969, Characteristics of the hydrogen oxidizing system in soybean nodule bacteroids, Arch. Microbiol., 121:199.CrossRefGoogle Scholar
  41. Ruiz-Argüeso, T., Hanus, F. J., and Evans, H. J., 1978, Hydrogen production and uptake by pea nodules as affected by strains of Rhizobium leguminosarum, Arch. Microbiol., 116:113.CrossRefGoogle Scholar
  42. Schink, B., and Schlegel, H. G., 1978, Hydrogen metabolism in aerobic hydrogen-oxidizing bacteria, Biochimie, 60:297.PubMedCrossRefGoogle Scholar
  43. Schlegel, H. G., and Eberhardt, U., 1972, Regulatory phenomena in the metabolism of Knallgasbacteria, in: “Advances in Microbial Physiology,” Vol. 7, A. H. Rose and D. W. Tempest, eds., Academic Press, London.Google Scholar
  44. Schubert, K. R., Engelke, J. A., Russell, S. A., and Evans, H. J., 1977, Hydrogen reactions of nodulated leguminous plants. I. Effect of rhizobial strain and plant age, Plant Physiol., 60:651.PubMedCrossRefGoogle Scholar
  45. Schubert, K. R., and Evans, H. J., 1976, Hydrogen evolution: A major factor affecting the efficiency of nitrogen fixation in nodulated symbionts, Proc. Natl. Acad. Sci., 73:1207.PubMedCrossRefGoogle Scholar
  46. Schubert, K. R., and Evans, H. J., 1977, The relation of hydrogen reactions to nitrogen fixation in nodulated symbionts, in: “Proceedings of the II International Symposium on N2 Fixation: Recent Developments in N2 Fixation,” W. E. Newton, J. R. Postgate, and C. Rodriguez-Barrueco, eds., Academic Press, London.Google Scholar
  47. Schubert, K. R., Jennings, N. T., and Evans, H. J., 1978, Hydrogen reactions of nodulated leguminous plants. II. Effects on dry matter accumulation and nitrogen fixation, Plant Physiol., 61:398.PubMedCrossRefGoogle Scholar
  48. Scott, D. B., Farnden, K. J. F., and Robertson, J. G., 1976, Ammonia assimilation in lupin nodules, Nature, 263:703.CrossRefGoogle Scholar
  49. Simpson, F. B., Maier, R. J., and Evans, H. J., 1979, Hydrogen-stimulated CO2 fixation and coordinate induction of hydrogen-ase and ribulosebisphosphate carboxylase in an H2−uptake positive strain of R. japonicum, Arch. Microbiol., 123:1.CrossRefGoogle Scholar
  50. Turner, G. L., and Bergersen, F. J., 1969, The relationship between nitrogen fixation and the production of HD from D2 by cell-free extracts of soya-bean nodule bacteroids, Biochem. J., 115:529.PubMedGoogle Scholar
  51. Valley, G., and Rettger, L. F., 1927, The influence of carbon dioxide on bacteria, J. Bacteriol., 14:101.PubMedGoogle Scholar
  52. Vincent, J. M., 1977, Rhizobium: General microbiology, In: “A Treatise on Dinitrogen Fixation, Section III,” R. W. F. Hardy and W. S. Silver, eds., John Wiley and Sons, New York.Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • H. J. Evans
    • 1
  • J. E. Lepo
    • 1
  • F. J. Hanus
    • 1
  • K. Purohit
    • 1
  • S. A. Russell
    • 1
  1. 1.Laboratory for Nitrogen Fixation ResearchOregon State UniversityCorvallisUSA

Personalised recommendations