Advertisement

Detrimental and Beneficial Effects of Oxygen Exerted on Hydrogen-Oxidizing Bacteria

  • H. G. Schlegel
  • M. E. K. Ibrahim
  • E. Wilde
  • K. Schneider
  • M. Schlesier
  • B. Friedrich
  • K. A. Malik

Abstract

The presence and absence of oxygen divides the biosphere into oxic and anoxic ecosystems, provides aerobic and anaerobic living conditions and enables either aerobiontic or anaerobiontic organisms to grow. As an electron acceptor of a high positive redox-potential oxygen enables aerobiontic cells to channel the substrate-derived electrons through a long respiratory chain and to generate metabolic energy with great efficiency. Oxygen enables cells to utilize aliphatic, aromatic and isoprenoid hydrocarbons as substrates which are not biodegradable under anaerobic conditions. There is no doubt that the beneficial effects of oxygen prevail. Looking closer, however, one realizes that almost all organisms, irrespective of their metabolic type, are exposed to possible oxygen toxicity. Oxygen exerts detrimental effects on anaerobionts such as the strictly anaerobic bacteria like Succinivibrio, Butyrivibrio, Clostridium haemolyticum and the methanogenic bacteria (Loesche, 1969). But even the strictly aerobic bacteria and higher organisms suffer from damage by oxygen (Gottlieb, 1975). This is seen in the defense mechanisms which enable aerobic organisms to cope with oxygen toxicity. At least some of the toxic species of oxygen, such as hydrogen peroxide, superoxide anions, hydroxyl radicals and singlet oxygen, produced by the metabolizing cell can be detoxified or quenched by special enzymes such as superoxide dismutase, catalase, peroxidases and carotenoids and possibly other pigments (Fridovich, 1976; Hassan and Fridovich, 1978; Krinsky, 1978; Morris, dy1975, 1978).

Keywords

Aerobic Bacterium Hydrogenase Activity Paracoccus Denitrificans Clostridium Pasteurianum Bovine Liver Catalase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berndt, H., Ostwal, K.-P., Lalucat, J., Schumann, Ch., Mayer, F., and Schlegel, H. G., 1976, Identification and physiological characterization of the nitrogen fixing bacterium Corynebac-terium autotrophicum GZ 29, Arch. Microbiol., 108:17.PubMedCrossRefGoogle Scholar
  2. Cammack, R., Lalla-Maharajh, W. V., and Schneider, K., 1980, EPR studies of some oxygen-stable hydrogenases, in: “Interactions Between Iron and Proteins in Oxygen and Electron Transport,” C. Ho, ed., Elsevier-North Holland, New York.Google Scholar
  3. Elstner, E. F., and Heupel, A., 1976, Inhibition of nitrite formation from hydroxylammoniumchloride: A simple assay for superoxide dismutase, Anal. Biochem., 70:616.PubMedCrossRefGoogle Scholar
  4. Fridovich, I., 1976, Oxygen radicals, hydrogen peroxide, and oxygen toxicity, in: “Free Radicals in Biology”, Vol. 1, W. A. Pryor, ed., Academic Press, New York.Google Scholar
  5. Gogotov, J. N., and Schlegel, H. G., 1974, N2−fixation by chemo-autotrophic hydrogen bacteria, Arch. Microbiol., 97:359.PubMedCrossRefGoogle Scholar
  6. Gottlieb, S. F., 1975, Effect of hyperbaric oxygen on microorganisms, in: “Annual Review of Microbiology,” Vol. 25, C. E. Clifton, S. Raffael, and M. P. Starr, eds., Annual Review Inc., Palo Alto, California.Google Scholar
  7. Harrison, D. E. F., 1973, Growth, oxygen, and respiration, Crit. Rev. Microbiol., 2:185.CrossRefGoogle Scholar
  8. Harrison, D. E. F., 1976, The regulation of respiration rate in growing bacteria, in: “Advances in Microbial Physiology,” Vol. 14, A. H. Rose, and D. W. Tempest, eds., Academic Press, London.Google Scholar
  9. Hassan, H. M., and Fridovich, I., 1978, Superoxide dismutase and its role for survival in the presence of oxygen, in: “Life Sciences Research Report 13: Strategies of Microbial Life in Extreme Environments,” M. Shilo, ed., Verlag Chemie, Weinheim.Google Scholar
  10. Ibrahim, M. E. K., 1979, Sauerstoffversorgung von Mikroorganismen durch Wasserstoffperoxid, Ph.D. Thesis.Google Scholar
  11. Ibrahim, M. E. K., and Schlegel, H. G., 1980a, Oxygen supply to bacterial suspensions of high cell densities by hydrogen peroxide, Biotechnol. Bioeng., in press.Google Scholar
  12. Ibrahim, M. E. K., and Schlegel, H. G., 1980b, Efficiency of bovine liver catalase as a catalyst to cleave H2O2 added continually to buffer solutions, Biotechnol. Bioeng., in press.Google Scholar
  13. King, W. R., and Andersen, K., 1980, Efficiency of CO2 fixation in the glycollate oxidoreductase mutant of Alcaligenes eutrophus which exports fixed carbon as glycollate, Arch. Microbiol., in press.Google Scholar
  14. Krinsky, N. I., 1978, Carotenoid pigments: Multiple mechanisms for coping with the stress of photosensitized oxidations, in: “Life Sciences Research Report 13: Strategies of Microbial Life in Extreme Environments,” M. Shilo, ed., Verlag Chemie, Weinheim.Google Scholar
  15. Lepo, J. E., Hanus, F. J., and Evans, H. J., 1980, Chemoautotrophic growth of hydrogen-uptake-positive strains of Rhizobium japonicum, J. Bacteriol., 141:664.PubMedGoogle Scholar
  16. Loesche, W. J., 1969, Oxygen sensitivity of various anaerobic bacteria, Appl. Microbiol., 18:723.PubMedGoogle Scholar
  17. Lorimer, G. H., and Andrews, T. G., 1980, The C2 photo—and chemo-respiratory carbon oxidation cycle, Plant Biochem., in press.Google Scholar
  18. Malik, K. A., and Schlegel, H. G., 1980, Enrichment and isolation of new nitrogen-fixing hydrogen bacteria, FEMS Microbiol. Lett., 8:101.CrossRefGoogle Scholar
  19. Morris, J. G., 1975, The physiology of obligate anaerobiosis, Adv. Microb. Physiol., 12:169.CrossRefGoogle Scholar
  20. Morris, J. G., 1978, Nature of oxygen toxicity in anaerobic microorganisms, in: “Life Sciences Research Report 13: Strategies of Microbial Life in Extreme Environments,” M. Shilo, ed., Verlag Chemie, Weinheim.Google Scholar
  21. Mortenson, L. E., and Chen, J. S., 1974, Hydrogenase, in: “Microbial Iron Metabolism,” J. B. Nielands, ed., Academic Press, New York.Google Scholar
  22. Mortenson, L. E., and Chen, J. S., 1976, Properties of the hydrogenase from Clostridium pasteurianum, in: “Microbial Production and Utilization of Gases (H2, CH4, CO2),” H. G. Schlegel, G. Gottschalk, and N. Pfennig, eds., E. Goltze KG, Göttingen.Google Scholar
  23. Nakos, G., and Mortenson, L. E., 1971, Structural properties of hydrogenase from Clostridium pasteurianum W5, Biochem., 10:2442.CrossRefGoogle Scholar
  24. Palleroni, N. J., and Palleroni, A. V., 1978, Alcaligenes latus, a new species of hydrogen-utilizing bacteria, Int. J. Syst. Bacteriol., 28:416.CrossRefGoogle Scholar
  25. Riley, M., and Anilionis, A., 1978, Evolution of the bacterial genome, in: “Annual Review of Microbiology,” Vol. 32, M. P. Starr, J. L. Ingraham, and S. Raffael, eds., Annual Review Inc., Palo Alto, California.Google Scholar
  26. Robson, R. L., 1979, Characterization of an oxygen-stable nitrogen-ase complex isolated from Azotobacter chroococcum, Biochem. J., 181:569.PubMedGoogle Scholar
  27. Schink, B., 1978, Membrane-bound hydrogenase from Alcaligenes eutrophus: Biochemical and immunological characterization of the solubilized and purified enzyme, in: “Hydrogenases: Their Catalytic Activity, Structure and Function,” H. G. Schlegel, and K. Schneider, eds., Erich Goltze KG, Göttingen.Google Scholar
  28. Schink, B., and Schlegel, H. G., 1978, Hydrogen metabolism in aerobic hydrogen-oxidizing bacteria, Biochimie, 60:297.PubMedCrossRefGoogle Scholar
  29. Schink, B., and Schlegel, H. G., 1979, The membrane-bound hydrogenase of Alcaligenes eutrophus. I. Solubilization, purifica-tion, and biochemical properties, Biochim. Biophys. Acta, 567:315.PubMedGoogle Scholar
  30. Schlegel, H. G., 1977, Aeration without air. Oxygen supply by hydrogen peroxide, Biotechnol. Bioeng., 19:413.PubMedCrossRefGoogle Scholar
  31. Schlegel, H. G., and Schneider, K., 1978, Introductory report: Distribution and physiological role of hydrogenases in microorganisms, in: “Hydrogenases: Their Catalytic Activity, Structure and Function,” H. G. Schlegel, and K. Schneider, eds., Erich Goltze KG, Göttingen.Google Scholar
  32. Schlegel, H. G., and Vollbrecht, D., 1980, Formation of the dehydrogenases for lactate, ethanol and butanediol in the strictly aerobic bacterium Alcaligenes eutrophus, J. Gen. Microbiol., 117:475.Google Scholar
  33. Schneider, K., and Cammack, R., 1978, Soluble hydrogenase from Alcaligenes eutrophus, an iron-sulfur flavoprotein, in: “Hydrogenases: Their Catalytic Activity, Structure and Function,” H. G. Schlegel, and K. Schneider, eds., Erich Goltze KG, Göttingen.Google Scholar
  34. Schneider, K., Cammack, R., Schlegel, H. G., and Hall, D. O., 1979, The iron-sulfur centers of soluble hydrogenase from Alcaligenes eutrophus, Biochim. Biophys. Acta, 578:445.PubMedGoogle Scholar
  35. Schneider, K., and Schlegel, H. G., 1976, Purification and properties of soluble hydrogenase from Alcaligenes eutrophus H16, Biochim. Biophys. Acta, 452:66.PubMedGoogle Scholar
  36. Schneider, K., and Schlegel, H. G., 1977, The NAD reducing soluble hydrogenase from Alcaligenes eutrophus, in: “Second International Symposium—Microbial Growth on C1-Compounds,” G. K. Skryabin, M. V. Ivanov, E. N. Kondratjeva, G. A. Zavarzin, Yu. A. Trotsenko, and A. I. Nesterov, eds., Scientific Centre for Biological Research USSR, Academy of Sciences, Pushchino.Google Scholar
  37. Schneider, K., and Schlegel, H. G., 1978, Identification and quantitative determination of the flavin component of soluble hydrogenase from Alcaligenes eutrophus, Biochem. Biophys. Res. Commun., 84:564.PubMedCrossRefGoogle Scholar
  38. Schneider, K., and Schlegel, H. G., 1980, Production of superoxide radicals by soluble hydrogenase from Alcaligenes eutrophus H16, Biochem. J., in press.Google Scholar
  39. Simpson, F. B., Maier, R. J., and Evans, H. J., 1979, Hydrogen-stimulated CO2 fixation and coordinate induction of hydrogenase and ribulosebisphosphate carboxylase in a H2−uptake positive strain of Rhizobium japonicum, Arch. Microbiol., 123:1.CrossRefGoogle Scholar
  40. Vollbrecht, D., and Schlegel, H. G., 1978, Excretion of metabolites by hydrogen bacteria. II. Influences of aeration, pH, temperature and age of cells, Eur. J. Appl. Microbiol. Biotech-nol., 6:157.CrossRefGoogle Scholar
  41. Vollbrecht, D., and Schlegel, H. G., 1979, Excretion of metabolites by hydrogen bacteria. III. D(−)−3-hydroxybutanoate, Eur. J. Appl. Microbiol. Biotechnol., 7:259.CrossRefGoogle Scholar
  42. Vollbrecht, D., El Nawawy, M. A., and Schlegel, H. G., 1978, Excretion of metabolites by hydrogen bacteria. I. Autotrophic and heterotrophic fermentations, Eur. J. Appl. Microbiol. Biotechnol., 6:145.CrossRefGoogle Scholar
  43. Vollbrecht, D., Schlegel, H. G., Stoschek, G., and Janczikowski, A., 1979, Excretion of metabolites by hydrogen bacteria. IV. Respiration rate-dependent formation of primary metabolites and of poly-3-hydroxybutanoate, Eur. J. Appl. Microbiol. Biotechnol., 7:276.Google Scholar
  44. Weiss, A. R., Schneider, K., and Schlegel, H. G., 1980, Purification and properties of the membrane-bound hydrogenase of Pseudomonas pseudoflava GA3, Curr. Microbiol., 3:317.CrossRefGoogle Scholar
  45. Wiegel, J., and Schlegel, H. G., 1976, Enrichment and isolation of nitrogen fixing hydrogen bacteria, Arch. Microbiol., 107:139.PubMedCrossRefGoogle Scholar
  46. Wiegel, J., Wilke, D., Baumgarten, J., Opitz, R., and Schlegel, H. G., 1978, Transfer of the nitrogen-fixing hydrogen bacterium Corynebacterium autotrophicum Baumgarten et al. to Xanthobacter gen. nov., Int. J. Syst. Bacteriol., 28:573.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • H. G. Schlegel
    • 1
    • 2
  • M. E. K. Ibrahim
    • 1
    • 2
  • E. Wilde
    • 1
    • 2
  • K. Schneider
    • 1
    • 2
  • M. Schlesier
    • 1
    • 2
  • B. Friedrich
    • 1
    • 2
  • K. A. Malik
    • 1
    • 2
  1. 1.Institut für Mikrobiologie der Georg-August-Universität GöttingenGöttingenGermany
  2. 2.Deutsche Sammlung von Mikroorganismen, GBFGöttingenGermany

Personalised recommendations