Advertisement

A Mutant of Rhizobium Japonicum 110 with Elevated Nif Activity in Free-Living Culture

  • Sui-Sheng T. Hua
  • D. Barry Scott
  • Soo T. Lim

Abstract

The enhancement of biological nitrogen fixation in the legume-Rhizobium symbiosis involves selection strategies at both the plant and symbiont level to identify and define traits suitable for improving the symbiosis. One of the major advances at the symbiont level was the identification of the hydrogen uptake (Hup) enzyme system as being important in the overall energy efficiency of nitrogen fixation (Schubert and Evans, 1976; also this volume). Rhizobium strains that possess the uptake hydrogenase are able to reutilize some of the hydrogen evolved from nitrogenase (Schubert and Evans, 1976) and thus regenerate ATP (Emerich et al., 1979). This is important in a system which has such a high energy (ATP) demand for biological nitrogen fixation (Andersen and Shanmugam, 1977).

Keywords

Nitrogen Fixation Nitrate Reductase Activity Rhizobium Strain Hydrogenase Activity Potassium Chlorate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen, K. and Shanmugam, K. T., 1911, Nitrogen fixation: determination of the ratio of formation of H2 to NH4 + catalyzed by nitrogenase of Klebsiella pneumoniae in vivo, J. Gen. Microbiol., 103:107.Google Scholar
  2. Burton, J., 1976, Pragmatic aspects of the Rhizobium-leguminous plant association, in: “Proceedings of the First International Symposium on Nitrogen Fixation,” Vol. 2, W. E. Newton and C. J. Nyman, eds., Washington State University Press, Pullman.Google Scholar
  3. Campbell, D. H., Garvey, J. S., Cremer, N. E., and Sussdorf, D. H., 1970, Methods in Immunology: A laboratory text for instruction and research, 2nd ed., W. A. Benjamin, Inc., Menlo Park, CA.Google Scholar
  4. Emerich, D. W., Ruiz-Argueso, T., Ching, T.-M., and Evans, H. J., 1979, Hydrogen-dependent nitrogenase activity and ATP formation in Rhizobium japonicum bacteroids, J. Bacteriol., 137:153.PubMedGoogle Scholar
  5. Hardy, R. W. F., Holsten, D., Jackson, E. K., and Burns, R. C., 1968, The acetylene-ethylene assay for N2-fixation: laboratory and field evaluation, Plant Physiol., 43:1185.PubMedCrossRefGoogle Scholar
  6. Hua, S. T., 1978, Energy efficient mutants of Rhizobium japonicum 110, Abstr. Annu. Meet. Am. Soc. Microbiol.Google Scholar
  7. Kennedy, I. R., Rigaud, J., and Trinchant, J. C., 1975, Nitrate reductase from bacteroids of Rhizobium japonicum: enzyme characteristics and possible interaction with nitrogen fixation, Biochim. Biophys. Acta, 397:24.PubMedGoogle Scholar
  8. Kurz, W. G. W., and LaRue, T. A., 1975, Nitrogenase activity in rhizobia in absence of a plant host, Nature, 256:407.CrossRefGoogle Scholar
  9. Lim, S. T., 1978, Determination of hydrogenase in free-living cultures of Rhizobium japonicum and energy efficiency of soybean nodules, Plant Physiol., 62:609.PubMedCrossRefGoogle Scholar
  10. Lim, S. T., Andersen, K., Tait, R., and Valentine, R. C., 1980, Genetic engineering in agriculture: Hydrogen uptake (Hup) genes, Trends in Biochem. Sci., 5:167.CrossRefGoogle Scholar
  11. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J., 1957, Protein measurement with the Folin phenol reagent, J. Biol. Chem., 193:265.Google Scholar
  12. Maier, R. J., and Brill, W. J., 1978, Mutant strains of Rhizobium japonicum with increased ability to fix nitrogen for soybean, Science, 201:448.PubMedCrossRefGoogle Scholar
  13. McComb, J. A., Elliot, J., and Dilworth, M. J., 1975, Acetylene reduction by Rhizobium in pure culture, Nature, 256:409.CrossRefGoogle Scholar
  14. Mielenz, J. R., Jackson, L. E., O’Gara, F., and Shanmugam, K. T., 1979, Fingerprinting bacterial chromosomal DNA with restriction endonuclease EcoR1; comparison of Rhizobium spp. and identification of mutants, J. Microbiol., 25:803.Google Scholar
  15. O’Farrell, P. H., 1975, High resolution two-dimensional electrophoresis of proteins, J. Biol. Chem., 250:4007.PubMedGoogle Scholar
  16. O’Gara, F., and Shanmugam, K. T., 1976, Regulation of nitrogen fixation by rhizobia: export of fixed N2 as NH4 +, Biochim. Biophys. Acta, 437:313.PubMedCrossRefGoogle Scholar
  17. O’Gara, F., and Shanmugam, K. T., 1977, Regulation of nitrogen fixation in Rhizobium spp. Isolation of mutants of Rhizobium trifolii which induce nitrogenase activity, Biochim. Biophys. Acta, 500:277.PubMedCrossRefGoogle Scholar
  18. Pagan, J. D., Child, J. J., Scowcroft, W. R., and Gibson, A. H., 1975, Nitrogen fixation by Rhizobium cultured on a defined medium, Nature, 256:406.CrossRefGoogle Scholar
  19. Schmidt, E. L., Bankole, R. O., and Bohlool, B. B., 1968, Fluorescent-antibody approach to study of rhizobia in soil, J. Bacteriol., 95:1987.PubMedGoogle Scholar
  20. Schubert, K. R. and Evans, H. J., 1976, Hydrogen evolution: a major factor affecting the efficiency of nitrogen fixation in nodulated symbionts, Proc. Natl. Acad. Sci., 73:1207.PubMedCrossRefGoogle Scholar
  21. Scott, D. B., Hennecke, H., and Lim, S. T., 1980, The biosynthesis of nitrogenase Mo-Fe protein polypeptides in free-living cultures of Rhizobium japonicum, Biochim. Biophys. Acta, in press.Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Sui-Sheng T. Hua
    • 1
  • D. Barry Scott
    • 2
  • Soo T. Lim
    • 2
  1. 1.Western Regional Research LaboratoryUSDA/SEABerkeleyUSA
  2. 2.Plant Growth LaboratoryUniversity of CaliforniaDavisUSA

Personalised recommendations