Multiple Coulomb Excitation of High Spin States

  • D. Schwalm
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 67)


Nuclear Coulomb excitation, that is the excitation of a nucleus via the electromagnetic field produced by another, swiftly passing nucleus, has been a very important tool in nuclear spectroscopy ever since the first Coulomb excitation experiment had been performed by T. Huus and Č. Zupančič in the early fifties1. The fruitfulness of Coulomb excitation for the study of the properties of excited nuclear states is mainly due to two reasons: (i) As long as the two colliding nuclei remain well outside the range of the nuclear forces, the interaction between the two nuclei can be assumed to be purely electromagnetic. Thus the excitation process itself is theoretically well understood, in contrast to most production processes involving nuclear forces. Consequently, the cross-sections observed in Coulomb excitation measurements can be solely used to determine electromagnetic properties of the nuclear states involved in the excitation process. (ii) Coulomb excitation, on the other hand, provides also a very clean and well determined way for producing nuclei in excited states. Thus the application of standard in-beam γ-spectroscopic techniques as e.g. the Recoil-Distance, the Doppler-Shift-Attenuation and the Perturbed-Angular-Correlation methods developed to study specific properties of excited states, is very often simplified significantly by using Coulomb excitation to prepare the ensemble of excited nuclei.


Target Nucleus High Spin State Rigid Rotor Coulomb Excitation Ground State Band 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Huus and Č. Zupančič, Dan. Mat. Fys. Medd. 28 (1953) No. 1, reprinted in “Coulomb Excitation” ed. by K. Alder and A. Winther (Academic Press, New York, 1966) p. 33 (This reprint collection includes many important papers on Coulomb excitation up to 1965.)Google Scholar
  2. 2.
    G. Breit, R.L. Gluckstern, and J.E. Russel, Phys. Rev. 103 (1956) 727; J. de Boer and J. Eichler, in Advances in Nuclear Physics, Vol. 1, ed. M. Baranger and E. Vogt (Plenum Press, New York, 1968) p. 1; O. Häusser, in Nuclear Spectroscopy and Reactions, part C, ed. J. Cerny (Academic Press, New York, 1974) p. 55.CrossRefGoogle Scholar
  3. 3.
    K. Alder and A. Winther, Electromagnetic Excitation (North-Holland Publ. Comp., Amsterdam, 1975); see also K. Alder, A. Bohr, T. Huus, B.R. Mottelson, and A. Winther, Rev. Mod. Phys. 28 (1956) 432.Google Scholar
  4. 4.
    See e.g. F. Roesel, J.X. Saladin, and K. Alder, Comp. Phys. Commun. 8 (1974) 35.CrossRefGoogle Scholar
  5. 5.
    A. Winther and J. de Boer, in Coulomb excitation, ed. K. Alder and A. Winther (Academic Press, New York, 1966) p. 303.Google Scholar
  6. 6.
    A. Lell, diploma thesis, University of Munich (1978).Google Scholar
  7. 7.
    E. Grosse, MPI Heidelberg, report V26 (1975).Google Scholar
  8. 8.
    K. Alder and A. Winther, Mat. Fys. Medd. Dan. Vid. Selsk. 32 (1980) No. 8 (see also ref. 3); N. Rowley and P. Colombani, Phys. Rec. C 11 (1975) 648.Google Scholar
  9. 9.
    R. Bosshard, R.L. Chase, J. Fischer, S. Iwata, and V. Radeka, IEEE Transaction on Nucl. Science NS-22 (1975) 2053.Google Scholar
  10. 10.
    Tables of Isotopes, ed. by C.M. Lederer and V.S. Shirley (J. Wiley and Sons, New York, 1978).Google Scholar
  11. 11.
    R.O. Sayer et al., Phys. Rev. C17 (1978) 1026 (and references quoted therein)Google Scholar
  12. 12.
    R.N. Oehlberg et al., Nucl. Phys. A219 (1974) 543.Google Scholar
  13. 13.
    L.D. Tolsma, Phys. Rev. C20 (1979) 592.Google Scholar
  14. 14.
    A. Faessler, W. Greiner and R.K. Sheline, Nucl. Phys. 70(1965)33.CrossRefGoogle Scholar
  15. 15.
    H.J. Wollersheim and Th.W. Elze, Nucl. Phys. A278 (1977) 87.Google Scholar
  16. 16.
    A. Bohr and B.R. Mottelson, Nucl. Structure (W.A. Benjamin Inc., Reading, 1975) Vol. 2 (1975) p. 158Google Scholar
  17. 17.
    A similar reduction has been discussed by K. Neergard, priv. com.Google Scholar
  18. 18.
    M.W. Guidry et al., Nucl.Phys. A266 (1976) 228.Google Scholar
  19. 19.
    E. Grosse et al., Phys. Rev. Lett. 35 (1975) 565.CrossRefGoogle Scholar
  20. 20.
    F.S. Stephens and R.S. Simon, Nucl. Phys. A183 (1972) 257; R. Bengtsson and S. Frauendorf, Nucl. Phys. A314 (1979) 27; and Nucl. Phys. A327 (1979) 139; B. Banerjee, H.J. Mang and P. Ring, Nucl. Phys. A 215 (1973) 366 A. Faessler, M. Ploszajczak, and K.W. Schmid, Progress in Particle and Nuclear Physics, ed. by H. Wilkinson (Pergamon Press, Oxford, 1980), Vol. 5; M. Diebel, A.N. Mantri, and U. Mosel, Nucl. Phys. A345 (1980) 72.Google Scholar
  21. 21.
    R. Bengtsson, Int. Conf. on Nuclear Behaviour at High Angular Momentum, Strasbourg (1980), to be published in J. de Physique (see also R. Bengtsson and S. Frauendorf, ref. 20).Google Scholar
  22. 22.
    G. Scharff-Goldhaber, C.B. Dover, and A.L. Goodman, Ann. Rev. Nucl. Science 26 (1976) 239.CrossRefGoogle Scholar
  23. 23.
    M. Seiwert and P. Hess, Univ. Frankfurt, private communication.Google Scholar
  24. 24.
    A. Arima and F. Iachello, Ann. of Physics 111(1978) 201.CrossRefGoogle Scholar
  25. 25.
    R. S. Simon et al., to be published in Z. f. Physik.Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • D. Schwalm
    • 1
  1. 1.Gesellschaft für SchwerionenforschungDarmstadtW. Germany

Personalised recommendations