Low Energy Nuclear Fission

  • H. Nifenecker
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 67)


Fifteen years after the discovery of the fission process1–3) a very important step was made towards the synthesis of the shell7) and liquid drop model3–6). This was the unified model of Bohr and Mottelson,9 and Mottelson and Nilsson,10. In this model the nuclear potential is allowed to be deformed. This deformation induces a deformation of the nuclear matter density which should be consistent with the potential itself. This was the socalled self consistent approach. In this approach the self consistency was not required in “detail” but on the second moments of the potential and density distributions. The potential was therefore related to smoothed average density. It was also recognized by Swiatecki et al.,11 that all systems with “leptodermous” (thin-skin) density distribution should behave as liquid drops, (as far as their potential energy goes). Was the liquid drop model related to the average density responsible for the self consistent average potential? The answer to this question would have still to wait more than ten years. The Nilsson model was able to account very satisfactorily for ground state deformations but failed at large deformations and predicted much too strong stabilities of nuclei towards fission. The real break through was made in 1966 by Myers and Swiatecki,12 and Strutinsky,13.


Saddle Point Level Density Liquid Drop Fission Fragment Shell Correction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. Hahn and F. Strassmann, Naturwisess, 27, 11 (1939).CrossRefGoogle Scholar
  2. 2.
    E. Fermi, Nature 133, 898 (1934).CrossRefGoogle Scholar
  3. 3.
    L. Meitner and O.R. Frisch, Nature 143, 239, 47 (1939).Google Scholar
  4. 4.
    J. Frenkel, Phys. Rev. 55, 987 (1939) J. Phys USSR 1, 125 (1939).CrossRefGoogle Scholar
  5. 5.
    N. Bohr and J. Wheeler, Phys. Rev. 56 426 (1939).CrossRefGoogle Scholar
  6. 6.
    H. von Halban, F. Joliot and L. Kowarski, Nature 143, 470 (1939).CrossRefGoogle Scholar
  7. 7.
    O. Haxcel, J.M.D. Jensen and H.E. Suess, Phys. Rev. 75, 1766 (1949). M.G. Mayer, Phys. Rev. 75, 1969 (1949).CrossRefGoogle Scholar
  8. 8.
    S. Polikanov, V. Druin, V. Karnankov, V. Mikleev, A. Pleve, N. Skobelev, V. Subbotin, G. Ter Akopyan and F. Fornichev, Sov. Phys. JETP 15, 1016 (1962).Google Scholar
  9. 9.
    A. Bohr and B. Mottelson, Kgl. Dan. Vid. Selsk. Mat. Fys. Medd. 30, No 1 (1955).Google Scholar
  10. 10.
    S.G. Nilsson, Kgl. Dan. Vid. Selsk. Mat. Fys. Medd. 29, No 16 (1955).Google Scholar
  11. 11.
    See for example W.D. Myers in “Dynamic Structure of Nuclear States”, Proc. of the 1971 Mont Tranblant, Int. Summer School (Univ. of Toronto Press 1977).Google Scholar
  12. 12.
    W.D. Myers and W.J. Swiatecki, Nucl. Phys. 81, 1 (1966).Google Scholar
  13. 13.
    V.M. Strutinsky, Yad. Fis. 3, 614 (1966), Nucl. Phys. A 95, 420 (1967), A 122, 1 (1968).Google Scholar
  14. 14.
    R. Balian and C. Bloch, Ann. Phys. (N.Y.) 60, 401 (1970).CrossRefGoogle Scholar
  15. 15.
    M. Brack and P. Quentin, International Conference on Nuclear Self Consistent kields, ICTP, Triest 1975, p. 353.Google Scholar
  16. 16.
    L. Wilets, Theories of Nuclear Fission, Clarendon Press Oxford (1964).Google Scholar
  17. 17.
    J.R. Nix, Nucl. Phys. A 130, 241 (1969).CrossRefGoogle Scholar
  18. 18.
    See for example: L. Moretto, Lectures at the Erice School On Heavy Ion Interactions at High Energies (1979).Google Scholar
  19. 19.
    R. Vandenbosch, J. Huizenga, Nuclear Fission (1973) Academic Press New York.Google Scholar
  20. 20.
    H.C. Pauli and T. Ledergerber, 3rd Symposium on Physics and Chemistry of Fission, IAEA, Rochester, Vol.I, p.463 (1973).Google Scholar
  21. 21.
    D. Paya, J. Blons, H. Derrien, A. Fubini, A. Michaudon and P. Ribon, J. Phys. and Radium, Suppl. C1.159 (1967).Google Scholar
  22. 22.
    E. Migneco and J. Theobald, Nucl. Phys. A. 112, 603 (1968).CrossRefGoogle Scholar
  23. 23.
    J. Blachot, J. Crançon, C. Hamelin, A. Moussa, 4th Int. Symposium on Physics and Chemistry of Fission, IAEA, Jülich (1979).Google Scholar
  24. 24.
    R. Brissot, J. Crançon, C. Ristori, J.P. Bocquet and A. Moussa, Nucl. Phys. A 282, 109 (1977).CrossRefGoogle Scholar
  25. 25.
    H. Nifenecker, J. Blachot, J.P. Bocquet, R. Brissot, J. Crançon, C. Hamelin, G. Mariolopoulos, C. Ristori, 4th Int. Symposium on Physics and Chemistry of Fission, IAEA, Jülich (1979). IAEA Vienna (1980) Vol.II p.35.Google Scholar
  26. 26.
    S.E. Larsson, I. Ragnarsson and S.G. Nilsson, Phys. Lett. 38B 269 (1972).Google Scholar
  27. 27.
    M. Brack, Nuclear Theory for Applications, ICTP, Triest 1980, IAEA SMR 43, p.327.Google Scholar
  28. 28.
    H.J. Specht, J. Weber, E. Konecny and D. Heunemann, Phys. Lett. B.41, 43 (1972).Google Scholar
  29. 29.
    D. Habs, V. Metag, H.J. Specht and G. Ulfert, Phys. Lett. 38, 387 (1977).CrossRefGoogle Scholar
  30. 30.
    P. Moller and R. Nix, 3rd Int. Symposium on Physics and Chemistry of Fission, IAEA, Vol. I 103, Rochester (1973).Google Scholar
  31. 31.
    J. Blons, C. Mazur, D. Paya, M. Ribrag and H. Weigman, Phys. Rev. Lett. 41, 1282 (1978).CrossRefGoogle Scholar
  32. 32.
    A. Bohr and B. Mottelson, Nuclear Structure, Vol.II, Benjamin 1975.Google Scholar
  33. 33.
    H.C. Britt, 4th International Symposium on Physics and Chemistry of Fission, IAEA, Jülich (1979). IAEA Vienna(1980) Vol.I, p.3.Google Scholar
  34. 34.
    V.M. Strutinsky, 4th International Symposium on Physics and Chemistry of Fission, IAEA, Jülich (1979).Google Scholar
  35. 35.
    C.F. Tsang and J.B. Wilhelmy, Nucl. Phys. A184, 417 (1972).Google Scholar
  36. 36.
    S. Bjornholn, A. Bohr, B. Mottelson, 3rd Int. Symp. on Phys. and Chemistry of Fission, IAEA, Vol.I p.367, Rochester (1973).Google Scholar
  37. 37.
    P. Fong, Phys. Rev. 102 (1957) 434.CrossRefGoogle Scholar
  38. 38.
    B.D. Wilkins, E.P. Steinberg and R.P. Chasman, Phys. Rev. C14, 1832 (1976).Google Scholar
  39. 39.
    W. Nörenberg, Proc. 2è IAEA Symp. on Chemistry and Phys. of Fission, p.51, Vienna 1969.Google Scholar
  40. 40.
    M.G. Mustafa, U. Mosel and H.W. Schmitt, Phys. Rev. 1519 (1973).Google Scholar
  41. 41.
    M.G. Mustafa, 4th International Symposium on Physics and Chemistry of Fission, IAEA, Jülich (1979).Google Scholar
  42. 42.
    G. Mariolopoulos, Ch. Hamelin, J. Blachot, J.P. Bocquet, P. R. Brissot, J. Crançon, H. Nifenecker and Ch. Ristori, To be published in Nuclear Physics.Google Scholar
  43. 43.
    H.G. Clerc, W. Lang, H. Wohlfarth, H. Schräder, K.H. Schmidt, Proc. 4th IAEA Symp. on Physics and Chemistry of Fission Jülich (1979), IAEA Vienna (1980) Vol.II p.65.Google Scholar
  44. 44.
    R. Brissot, J. Crançon, Ch. Ristori, J.P. Bocquet and A. Moussa Nucl. Phys. A282 (1977) 109.Google Scholar
  45. 45.
    S. Amie; H. Feldstein, Phys. Rev. 11 (1975) p.845.Google Scholar
  46. 46.
    F. Izak Biran, S. Amiel, Phys. Rev.C, Vol.16 n°1 p.266.Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • H. Nifenecker
    • 1
  1. 1.Département de Recherche Fondamentale, C.P.N.Centre d’Etudes Nucléaires de GrenobleGrenoble CedexFrance

Personalised recommendations