Chemical Aspects of Equilibrium Segregation to Ceramic Interfaces

  • P. Wynblatt
  • R. C. McCune
Part of the Materials Science Research book series (MSR, volume 14)


Equilibrium segregation to solid interfaces has been the subject of increasing scientific interest over the last few years. This has in large part been the result of a growing experimental capability for the chemical characterization of surfaces and interfaces. The segregation of embrittling impurities to grain boundaries in metals has been the most intensively studied interfacial segregation phenomenon1, 2 although significant work has also been performed on segregation to metal surfaces3, 4. In contrast, there has been relatively little work on the measurement of equilibrium segregation to other types of solid interfaces, such as grain boundaries in ceramics5, 6, surfaces of ionic solids7, 8, or interphase interfaces of any kind9.


Auger Electron Spectroscopy Space Charge Region Surface Segregation Boundary Segregation Interface Composition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. D. Hondros and M. P. Seah, Int. Metals Rev. 22, 262 (1977).CrossRefGoogle Scholar
  2. 2.
    M. Guttmann and D. McLean, in “Interfacial Segregation”, W. C. Johnson and J.M. Blakely Eds., ASM, Metals Park (1979) p. 261.Google Scholar
  3. 3.
    P. Wynblatt and R. C. Ku, Ibid, p. 115.Google Scholar
  4. 4.
    J. M. Blakely and H. V. Thapliyal, Ibid, p. 137.Google Scholar
  5. 5.
    W. D. Kingery, J. Amer. Ceram. Soc. 57, p. 1 and 74 (1974).CrossRefGoogle Scholar
  6. 6.
    W. C. Johnson, Met. Trans. 8A, 1413 (1977).Google Scholar
  7. 7.
    J. M. Blakely, in “Electrode Processes in Solid State Ionics”, M. Kleitz and J. Dupuy Eds., D. Reidel Publishing Co., Dordrecht-Hollant/Boston-USA (1976) p. 83.Google Scholar
  8. 8.
    Y. T. Tan, Progress in Solid State Chem. 10, 103 (1975).CrossRefGoogle Scholar
  9. 9.
    W. C. Johnson, in “Interfacial Segregation”, W. C. Johnson and J. M. Blakely Eds., ASM, Metals Park (1979), p. 351.Google Scholar
  10. 10.
    J. P. Hirth, in “Structure and Properties of Metal Surfaces”, Maruzen, Tokyo (1973), p. 10.Google Scholar
  11. 11.
    R. Defay, I. Prigogine, A. Bellemans and D. H. Everett, “Surface Tension and Adsorption”, Wiley, New York (1966), p. 158.Google Scholar
  12. 12.
    D. McLean, “Grain Boundaries in Metals”, Oxford University Press, London (1957).Google Scholar
  13. 13.
    D. A. Everest and A. Kelly, Proc. Conf. Electron Microscopy and Structure of Materials, G. Thomas, ed., Univ. of California Press, Berkeley (1972). p. 352.Google Scholar
  14. 14.
    M. P. Seah, J. Catal. 57, 450 (1979).CrossRefGoogle Scholar
  15. 15.
    V. S. Sundaram and P. Wynblatt, Surface Sci. 52, 569 (1975).CrossRefGoogle Scholar
  16. 16.
    F. L. Williams and D. Nason, Surface Sci. 45, 377 (1974).CrossRefGoogle Scholar
  17. 17.
    J. Frenkel, “Kinetic Theory of Liquids”, Oxford University Press, New York (1946).Google Scholar
  18. 18.
    K. Lehovec, J. Chem. Phys. 21, 1123 (1953).CrossRefGoogle Scholar
  19. 19.
    K. L. Kliewer and J. S. Koehler, Phys. Rev. A140, 1226 (1965).CrossRefGoogle Scholar
  20. 20.
    R. B. Poeppel and J. M. Blakely, Surface Sci. 15, 507 (1969).CrossRefGoogle Scholar
  21. 21.
    J. M. Blakely and S. Danyluk, Surface Sci. 40, 37 (1973).CrossRefGoogle Scholar
  22. 22.
    J. D. Tretjakow and H. Schmalzried, Ber. Bunsenges. Physik. Chem. 69, 396 (1965).Google Scholar
  23. 23.
    H. L. Marcus and M. E. Fine, J. Am. Ceram. Soc. 55, 568 (1972).CrossRefGoogle Scholar
  24. 24.
    W. C. Johnson, D. F. Stein and R. W. Rice, in “Grain Boundaries in Engineering Materials”, J. L. Walter, J. H. Westbrook and D. A. Woodford Eds., Claitors Publ. Div., Baton Rouge, (1975), p. 261.Google Scholar
  25. 25.
    R. S. Jupp, D. F. Stein and D. W. Smith, J. Mater. Sci. 15, 96 (1980).CrossRefGoogle Scholar
  26. 26.
    W. G. Morris and J. W. Cahn, in “Grain Boundaries in Engineering Materials”, J. L. Walter, J. H. Westbrook and D. A. Woodford Eds., Claitors Publ. Div., Baton Rouge, (1975) p. 223.Google Scholar
  27. 27.
    W. D. Kingery, T. Mitamura, J. B. Vander Sande and E. L. Hall, J. Mater. Sci. 14, 1766 (1979).CrossRefGoogle Scholar
  28. 28.
    T. Mitamura, E. L. Hall, W. D. Kingery and J. B. Vander Sande, Ceramurgia Int., 5, 131 (1979).CrossRefGoogle Scholar
  29. 29.
    W. D. Kingery, J. B. Vander Sande and T. Mitamura, J. Amer. Ceram. Soc. 62, 221 (1979).CrossRefGoogle Scholar
  30. 30.
    S. H. Overbury, P. A. Bertrand and G. A. Somorjai, Chemical Revs. 75, 547 (1975).CrossRefGoogle Scholar
  31. 31.
    G. Simmons and H. Wang, “Single Crystal Elastic Constraints and Calculated Aggregate Properties: A Handbook”, 2nd Edition, MIT Press, Cambridge, MA (1971).Google Scholar
  32. 32.
    Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology, Gp III, Vol. 1, Springer Verlag, Berlin-Heidelberg-New York (1966).Google Scholar
  33. 33.
    M. Shelef, M. A. Z. Wheeler and H. C. Yao, Surface Sci. 47, 697 (1975).CrossRefGoogle Scholar
  34. 34.
    J. T. Kummer and J. D. Youngs, J. Phys. Chem. 67, 107 (1963).CrossRefGoogle Scholar
  35. 35.
    A. Cimino, G. Minelli and B. A. DeAngelis, J. Electron Spectros. Relat. Phenom. 13, 291 (1978).CrossRefGoogle Scholar
  36. 36.
    Y. T. Tan, Surface Sci. 61, 1 (1976).CrossRefGoogle Scholar
  37. 37.
    K. L. Kliewer, J. Phys. Chem. Solids 27, 705 (1966).CrossRefGoogle Scholar
  38. 38.
    J. R. H. Black and W. D. Kingery, J. Am. Ceram. Soc. 62, 176 (1979).CrossRefGoogle Scholar
  39. 39.
    R. C. McCune and P. Wynblatt, to be published.Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • P. Wynblatt
    • 1
  • R. C. McCune
    • 1
  1. 1.Research Ford Motor CompanyDearbornUSA

Personalised recommendations