Improved Electrical Characterization of Ceramic Oxides Bulk vs. Interface Effects

  • T. Stratton
  • A. McHale
  • D. Button
  • H. L. Tuller
Part of the Materials Science Research book series (MSR, volume 14)


Electrical conductivity measurements, although one of the oldest characterization techniques, remains one of the most sensitive and versatile tools for the characterization of defects and mobility mechanisms in solids. Measurements may be performed under in-situ conditions over a broad range of temperatures, pressures and chemical environments. This enables one, for example, to monitor the kinetics of various types of reactions (e. g. redox, corrosion) which otherwise remain difficult to study. The interpretation of such measurements are, however, often hampered by interface phenomena such as exist at the electrodes and grain boundaries.


Complex Impedance Electrical Characterization Boundary Resistance Debye Relaxation Depression Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. J. Reed, T. G. Stratton, and H. L. Tuller, to be published.Google Scholar
  2. 2.
    J. E. Bauerle, “Study of Solid Electrolyte Polarization by a Complex Admittance Method,” J. Phys. Chem. Solids 30, 2657 (1969).CrossRefGoogle Scholar
  3. 3.
    E. Schouler, M. Kleitz, and C. Deporte, “Application Selon Bauerle Du Tracé Des Diagrammes D’Admittance Complex En Electrochimie Des Solides: I — Étude de quelque reactions d’électrode sur (Zr02)0.91 (Y2O3)0.90,” J. chim. Phys. 70 923, (1973).Google Scholar
  4. 4.
    H. L. Tuller, D. P. Button, and D. R. Uhlmann, “Fast Ion Transport in Oxide Glasses,” J. Non-Cryst. Solids, in press.Google Scholar
  5. 5.
    H. L. Tuller and A. S. Nowick, “Doped Ceria as a Solid Oxide Electrolyte,” J. Electrochem. Soc. 122, 255 (1975).CrossRefGoogle Scholar
  6. 6.
    T. G. Stratton, D. Reed and H. L. Tuller, “Study of Boundary Effects in Stabilized Zirconia Electrolytes,” Advances in Ceramics, Vol. 1, in pressGoogle Scholar
  7. 7.
    E. Schouler, G. Giroud and M. Kleitz, “Applications Selon Bauerle Du Tracé Des Diagrammes D’Admittance Complexe en Electrochimie Des Solids: II — Étude de la conductivité de la zircone stabilisee a yttrium,” J. de Chim. Phys. 70, 1309 (1973).Google Scholar
  8. 8.
    S. H. Chu and M. A. Seitz, “The ac Electrical Behavior of Polycrystalline ZrO2-CaO,” J. Solid State Chem. 23, 297 (1978).CrossRefGoogle Scholar
  9. 9.
    E. Lilley and J. E. Strutt, “Bulk and Grain Boundary Ionic Conductivity in Polycrystalline β“-Alumina,” Phys. Stat. Sol. (a) 54, 639 (1979).CrossRefGoogle Scholar
  10. 10.
    D. R. Clarke, “Grain Boundary Segregation in a Commercial ZnO-Based Varistor,” J. Appl. Phys., 50, 6829 (1979).CrossRefGoogle Scholar
  11. 11.
    K. S. Cole and R. H. Cole, “Dispersion and Absorption in Dielectrics,” J. Chem. Phys. 9 341 (1941).CrossRefGoogle Scholar
  12. 12.
    A. K. Jonscher, “Physical basis of dielectric loss,” Nature 253, 717 (1975).CrossRefGoogle Scholar
  13. 13.
    K. L. Ngai and C. T. White, “Frequency Dependence of Dielectric Loss in Condensed Matter,” Phys. Rev. B 20, 2475 (1979).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • T. Stratton
    • 1
  • A. McHale
    • 1
  • D. Button
    • 1
  • H. L. Tuller
    • 1
  1. 1.Department of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations