Alumina Scale Adherence to CoCrAl Alloys and Coatings

  • D. P. Whittle
  • D. H. Boone
Part of the Materials Science Research book series (MSR, volume 14)


There are two essential requirements for alloys or coatings which are designed to withstand degradation by oxidation during high temperature exposure. First, they must form a surface oxide which thickens only at a slow rate, and secondly this oxide layer must remain adherent to the alloy surface under all conditions. A12O3 is generally regarded as the best protective oxide: diffusion through A12O3 is relatively slow in comparison with most other oxides, and since it is also stable, relatively little difficulty exists in selecting a composition which contains sufficient aluminium to provide, by selective oxidation, a protective A12O3 scale under various service environments. Typically, these will contain at least 5% A1 (by mass) and usually substantial amounts of Cr.


Active Element Protective Oxide Oxide Dispersion Surface Scale High Temperature Exposure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L.B. Pfeil, U.K. Patent no. 459048 (1937); no. 57408ö (1945).Google Scholar
  2. 2.
    D. Gupta, Thin Solid Films 63, 542 (1979).Google Scholar
  3. 3.
    J. Stringer, I.M. Allam & D.P. Whittle, Thin Solid Films 45, 377–384 (1977).CrossRefGoogle Scholar
  4. 4.
    I.M. Allam, D.P. Whittle, & J. Stringer, Qxidat. Metals 12, 35–67 (1978).CrossRefGoogle Scholar
  5. 5.
    CS. Giggins & F.S. Pettit, Wright Patterson Air Force Base, Contr. no. F33615-72-C-1072 (1975).Google Scholar
  6. 6.
    J.K. Tien & F.S. Pettit, Metall. Trans 3, 1587–1599 (1972).CrossRefGoogle Scholar
  7. 7.
    I.A. Allam, D.P. Whittle & J. Stringer, Qxidat. Metals 13, 381–402 (1978).CrossRefGoogle Scholar
  8. 8.
    D.H. Boone, S. Shen & R. McKoon, Thin Solid Films 63, 299 (1979).CrossRefGoogle Scholar
  9. 9.
    D.P. Whittle & J. Stringer, Phil. Trans. Roy. Soc., London A295, 309 (1980).Google Scholar
  10. 10.
    J.E. Antill, & K.A. Peakall, J. Iron Steel Inst. 205, 1136–1142 (1967).Google Scholar
  11. 11.
    J.M. Francis & J.A. Jutson, Corros. Sci. 8, 445–449 (1968).CrossRefGoogle Scholar
  12. 12.
    J.D. Kuenzly & D.L. Douglass, Qxidat. Metals 8, 139–170 (1974).CrossRefGoogle Scholar
  13. 13.
    G.W. Hollenberg & R.S. Gordon, J. Am. Ceram. Soc. 56, 140–144 (1972).CrossRefGoogle Scholar
  14. 14.
    F.A. Golightly, F.H. Stott & G.C. Wood, Qxidat. Metals 10 163–187 (1976).CrossRefGoogle Scholar
  15. 15.
    H. Pfeiffer, Werkst. Korros, Mannheim 8, 574 (1957).CrossRefGoogle Scholar
  16. 16.
    J. Stringer Corros. Sci. 10, 513–543 (1970).CrossRefGoogle Scholar
  17. 17.
    J.E. McDonald & J.G. Eberhart, Trans. Metall Soc. A.I.M.E. 233, 512–517 (1965).Google Scholar
  18. 18.
    E.J. Feiten, J. Electrochem. Soc. 108, 490–495 (1971).Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • D. P. Whittle
    • 1
  • D. H. Boone
    • 1
  1. 1.MMRD, Lawrence Berkeley Laboratory and Department of Materials Science and Mineral EngineeringUniversity of CaliforniaBerkeleyUSA

Personalised recommendations