The Nature and Role of Surface Charge in Ceramics

  • Z. A. Munir
  • J. P. Hirth
Part of the Materials Science Research book series (MSR, volume 14)


The recognition by Mott and Littleton1 and Frenkel2, that the energies of formation of cation and anion vacancies in ionic solids are different, led to the conclusion that unequal numbers of these defects can exist in a crystal. In the standard sense of a neutral reference state for the perfect ionic lattice, these defects, as well as interstitials, dislocation jogs, and surface kinks carry net charges. Since surfaces act as sources or sinks for vacancies, the inequality in the number of oppositely charged vacancies would lead to the formation of a surface charge. Compensation for this charge comes from oppositely charged defects residing in a region adjacent to the surface. This region, termed the Debye-Hückel layer, screens the charge on the surface from the bulk of the crystal which is neutral. Lehovic3, Eshelby et al.4 Kliewer5, 6, and Kliewer and Koehler7 extended the theoretical work of Frenkel and included an analysis for impurity-containing crystals. Moreover, since an edge dislocation acts as a source or sink for vacancies, it should also aquire a charge and have a compensating cylindrical region surrounding the dislocation line.


Surface Charge Space Charge Region Cation Vacancy Anion Vacancy Kink Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. F. Mott and M. J. Littleton, Trans. Farad. Soc. 34:485 (1938).CrossRefGoogle Scholar
  2. 2.
    J. Frenkel, Kinetic Theory of Liquids, Oxford University Press, London, 1946.Google Scholar
  3. 3.
    K. Lehovic, J. Chem. Phys. 21:1123 (1953).CrossRefGoogle Scholar
  4. 4.
    J. D. Eshelby, C.W.A. Newey, P. L. Pratt, and A. B. Lidiard, Phil. Mag. 3:75 (1958).CrossRefGoogle Scholar
  5. 5.
    K. L. Kliewer, Phys. Rev. 140:A1241 (1965).CrossRefGoogle Scholar
  6. 6.
    K. L. Kliewer, J. Phys. Chem. Solids 27:705 (1966).CrossRefGoogle Scholar
  7. 7.
    K. L. Kliewer and J. S. Koehler, Phys. Rev. 140:A1226 (1965).CrossRefGoogle Scholar
  8. 8.
    R. B. Poeppel and J. M. Blakely, Surf. Sci. 15:507 (1969).CrossRefGoogle Scholar
  9. 9.
    D. W. Short, R. A. Rapp, and J. P. Hirth, J. Chem. Phys. 57: 1381 (1972).CrossRefGoogle Scholar
  10. 10.
    K. L. Kliewer and J. S. Koehler, J. Appl. Phys. 37:4592 (1966).CrossRefGoogle Scholar
  11. 11.
    R. B. Poeppel, Ph.D. Thesis, Cornell University, 1969.Google Scholar
  12. 12.
    Lord Kelvin, Phil. Mag. 46:82 (1898).Google Scholar
  13. 13.
    H. Wakabayasi, J. Phys. Soc. Japan 15:2000 (1960).CrossRefGoogle Scholar
  14. 14.
    R. J. Schwensfeir and C. Elbaum, J. Phys. Chem. Solids 28:597 (1967).CrossRefGoogle Scholar
  15. 15.
    W. D. Kingery, J. Amer. Ceram. Soc. 57:1 (1974).CrossRefGoogle Scholar
  16. 16.
    B. E. Deal, J. Electrochem. Soc. 121:198c (1974).CrossRefGoogle Scholar
  17. 17.
    W. A. Tiller, J. Electrochem. Soc., in press (1980).Google Scholar
  18. 18.
    R. R. Razouk and B. E. Deal, J. Electrochem. Soc, in press (1980).Google Scholar
  19. 19.
    F. Trautweiler, L. E. Brady, J. W. Castle, and J. F. Hamilton, in: “The Structure and Chemistry of Solid Surfaces,” Proc. Fourth Int. Mater. Symp., Berkeley, 1968, (J. Wiley, New York, 1969).Google Scholar
  20. 20.
    V. I. Saunders, R. W. Tyler, and W. West, Photo. Sci. Eng. 12:90 (1968).Google Scholar
  21. 21.
    R. Williams, Phys. Rev. 126:442 (1962).CrossRefGoogle Scholar
  22. 22.
    D. Redfield, Phys. Rev. 140:A2056 (1965).CrossRefGoogle Scholar
  23. 23.
    M. F. Yan, R. M. Cannon, H. K. Bowen, and R. L. Coble, J. Amer. Ceram. Soc. 60:120 (1977).CrossRefGoogle Scholar
  24. 24.
    S. K. Tiku and F. A. Kröger, J. Amer. Ceram. Soc. 63:183 (1980).CrossRefGoogle Scholar
  25. 25.
    A. T. Fromhold, Jr., Thebry of Metal Oxidation, Vol. I, Fundamentals, North Holland, Amsterdam, 1976.Google Scholar
  26. 26.
    A. T. Fromhold, Jr., Oxidation of Metals 13:475 (1979).CrossRefGoogle Scholar
  27. 27.
    K. L. Chopra and I. H. Khan, Surf. Sci. 6:33 (1967).CrossRefGoogle Scholar
  28. 28.
    W. R. Sinclair and C. J. Calbick, Appl. Phys. Lett. 10:214 (1967).CrossRefGoogle Scholar
  29. 29.
    K. Mihama and M. Tanaka, J. Cryst. Growth 2:51 (1968).CrossRefGoogle Scholar
  30. 30.
    G. Shimaoka, J. Cryst. Growth 31:92 (1975).CrossRefGoogle Scholar
  31. 31.
    R. M. Hill, Nature 210:512 (1966).CrossRefGoogle Scholar
  32. 32.
    Z. A. Munir, L. S. Seacrist, and J. P. Hirth, Surf. Sci. 28: 357 (1971).CrossRefGoogle Scholar
  33. 33.
    R. B. Leonard and A. W. Searcy, J. Chem. Phys. 50:5419 (1969).CrossRefGoogle Scholar
  34. 34.
    Z. A. Munir and J. P. Hirth, J. Appl. Phys. 41:2697 (1970).CrossRefGoogle Scholar
  35. 35.
    J. E. McVicker, R. A. Rapp, and J. P. Hirth, J. Chem. Phys. 63:2645 (1975).CrossRefGoogle Scholar
  36. 36.
    S. T. Lam and Z. A. Munir, J. Cryst. Growth 47:373 (1979).CrossRefGoogle Scholar
  37. 37.
    I. V. Samarasekera and Z. A. Munir, High Temp. Sci. 10:155 (1978).Google Scholar
  38. 38.
    M. J. Yacaman, Z. A. Munir, T. Ocana, and J. P. Hirth, Appl. Phys. Lett. 34:727 (1979).CrossRefGoogle Scholar
  39. 39.
    M. J. Yacaman, Z. A. Munir, and J. P. Hirth, J. Cryst. Growth 49:475 (1980).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Z. A. Munir
    • 1
  • J. P. Hirth
    • 2
  1. 1.Division of Materials Science and EngineeringUniversity of CaliforniaDavisUSA
  2. 2.Metallurgical Engineering DepartmentOhio State UniversityColumbusUSA

Personalised recommendations