The Si-SiO2 Interface: Current Understanding of Chemical and Electronic Defects

  • Dennis W. Hess
Part of the Materials Science Research book series (MSR, volume 14)


The silicon-silicon dioxide solid state interface system has been extensively investigated over the past twenty years, primarily due to its vital importance in integrated circuit technology. Many of the studies performed have dealt with electrical characterization, with the result that electronic properties can be accurately and reproducibly controlled by process sequences. Still, most of these procedures are largely empirical, because little detailed chemical knowledge of the electronic defects is available. This paper reviews some of the relationships between electronic defects and the processing procedures utilized for integrated circuit fabrication. Ongoing theoretical and experimental research that suggests specific chemical origins for these defects is discussed. Possible common origins for certain of the charge centers are indicated.


Electron Spin Resonance Silicon Atom Silicon Surface Electron Spin Resonance Signal Electrochemical Society 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. H. Agajanian, Solid State Technol., Jan., 1977, p. 36.Google Scholar
  2. 2.
    The Physics of SiO2 and Its Interf aces, ed. by S. T. Pantelides, Pergamon Press, New York, 1978.Google Scholar
  3. 3.
    B. E. Deal and A. S. Grove, J. Appl. Phys., 36, 3770 (1965).CrossRefGoogle Scholar
  4. 4.
    D. W. Hess and B. E. Deal, J. Electrochem. Soc, 122, 579 (1975).CrossRefGoogle Scholar
  5. 5.
    E. A. Grene and Y. J. van der Meulen, ibid, 123, 1380 (1976).Google Scholar
  6. 6.
    N. Tsubouchi, H. Miyoshi, A. Nishimoto, and H. Abe, Jap. J. Appl. Phys., 16., 855 (1977).CrossRefGoogle Scholar
  7. 7.
    D. W. Hess and B. E. Deal, J. Electrochem. Soc, 124, 735 (1977).CrossRefGoogle Scholar
  8. 8.
    B. E. Deal, ibid, 125, 576 (1978).Google Scholar
  9. 9.
    R. J. Zeto, N. O. Korolkoff, and S. Marshall, Solid State Technology, July, 1979, p. 62.Google Scholar
  10. 10.
    F. M. Fowkes, D. W. Hess, and J. Kiddon, Electrochem. Soc. Extended Abstracts, Spring, 1977, Abstract No. 76.Google Scholar
  11. 11.
    F. M. Fowkes, F. H. Hielscher, J. H. End, III, D. A. Pike, Jr., C. F. Chan, and J. Kiddon, ibid, Spring 1980, Abstract No. 166.Google Scholar
  12. 12.
    A. S. Grove, B. E. Deal, E. H. Snow, and C. T. Sah, Solid State Electron., 8, 145 (1965).CrossRefGoogle Scholar
  13. 13.
    C. N. Berglund, IEEE Trans. Elec. Devices, ED-13, 701 (1966).CrossRefGoogle Scholar
  14. 14.
    P. V. Gray, and D. M. Brown, Appl. Phys. Lett., 8, 31 (1966).CrossRefGoogle Scholar
  15. 15.
    E. H. Nicollian and A. Goetzberger, Bell Syst. Tech. J., 46, 1055 (1966).Google Scholar
  16. 16.
    S. M. Sze, Physics of Semiconductor Devices, Wiley Interscience, New York, 1969.Google Scholar
  17. 17.
    M. Kuhn, Solid State Electron., 13, 873 (1970).CrossRefGoogle Scholar
  18. 18.
    A. Goetzberger and S. M. Sze, in Applied Solid State Science, Vol.1, ed. by R. Wolfe, Academic Press, New York, 1969, p. 153.Google Scholar
  19. 19.
    K. H. Zaininger and F. P. Heinam, Solid State Technol., May 1970, p. 49; June, 1970, p. 46.Google Scholar
  20. 20.
    D. R. Frankl, in CRC Critical Reviews in Solid State Sciences, May, 1974, p. 455.Google Scholar
  21. 21.
    K. L. Wang and A. O. Evwaraye, 1, 47, 4574 (1976).Google Scholar
  22. 22.
    B. E. Deal, J. Electrochem. Soc., 121, 198C (1974).CrossRefGoogle Scholar
  23. 23.
    B. E. Deal, ibid, 127, 979 (1980).Google Scholar
  24. 24.
    See, for instance, Chap. VII in Ref. 2.Google Scholar
  25. 25.
    F. Herman, J. P. Batra, and R. V. Kasowski, Ref. 2, p. 333.Google Scholar
  26. 26.
    L. A. Kasprzak and A. K. Gaind, IBM J. Res. Dev., 24, 348 (1980).CrossRefGoogle Scholar
  27. 27.
    R. Williams and M. H. Woods, J. Appl. Phys., 46, 695 (1975).CrossRefGoogle Scholar
  28. 28.
    E. H. Snow, A. S. Grove, B. E. Deal, and C. T. Sah, ibid, 36. 1664 (1965).Google Scholar
  29. 29.
    M. Kuhn and D. J. Silversmith, J. Electrochem. Soc, 118, 966 (1971).CrossRefGoogle Scholar
  30. 30.
    G. F. Derbenwick, J. Appl. Phys., 48, 1127 (1977).CrossRefGoogle Scholar
  31. 31.
    A. G. Revesz, J. Electrochem. Soc, 126, 122 (1979).CrossRefGoogle Scholar
  32. 32.
    B. Yurash and B. E. Deal, ibid, 115, 1191 (1968).Google Scholar
  33. 33.
    S. Mayo and W. H. Evans, ibid, 124, 780 (1977).Google Scholar
  34. 34.
    E. Yon, W. H. Ko, and A. B. Kuper, IEEE Trans. Elec Devices, ED-13, 276 (1966).CrossRefGoogle Scholar
  35. 35.
    F. M. Fcwkes and F. E. Witherell, IEEE Trans. Nuc Sci., NS-21, 67 (1974).Google Scholar
  36. 36.
    R. Williams and M. H. Woods, Appl. Phys. Lett. 22, 458 (1973).CrossRefGoogle Scholar
  37. 37.
    F. M. Fowkes and T. E. Burgess, Surface Sci., 13, 184 (1969).CrossRefGoogle Scholar
  38. 38.
    B. E. Deal, Semiconductor Silicon 1977, The Electrochemical Society, Inc., 1977, p. 276.Google Scholar
  39. 39.
    E. Kooi, The Surface Properties of Oxidized Silicon, N. V. Philips Gleoilampenfabrieken, Endhoven, The Netherlands, 1967.Google Scholar
  40. 40.
    A. J. Learn and D. W. Hess, Thin Solid Films, 37, L11 (1976).CrossRefGoogle Scholar
  41. 41.
    D. R. Kerr, J. S. Logan, P. J. Burkkardt, and W. A. Pliskin, IBM J. Res. & Develop., 8, 376 (1964).CrossRefGoogle Scholar
  42. 42.
    R. J. Kriegler, Semiconductor Silicon 1973, The Electrochemical Society, Inc., 1973, p. 363.Google Scholar
  43. 43.
    A. Rohatgi, S. R. Butler, and F. J. Feigl, J. Electrochem. Soc, 126, 149 (1979).CrossRefGoogle Scholar
  44. 44.
    J. Monkowski, J. Stach, and R. E. Tressler, ibid, 126, 1129 (1979).Google Scholar
  45. 45.
    B. E. Deal, M. Sklar, A. S. Grove, and E. H. Snow, ibid, 114, 266 (1967).Google Scholar
  46. 46.
    A. J. Bennett and L. M. Roth, J. Phys. Chem. Solids, 32, 1251 (1971).CrossRefGoogle Scholar
  47. 47.
    F. J. Feigl, W. B. Fowler, and K. L. Yip, Solid State Comm., 14, 225 (1974).CrossRefGoogle Scholar
  48. 48.
    R. B. Laughlin, J. D. Joannopoulos, and D. J. Chadi, in Ref. 2, p. 321.Google Scholar
  49. 49.
    F. M. Fowkes and D. W. Hess, Appl. Phys. Lett. 22, 377 (1973).CrossRefGoogle Scholar
  50. 50.
    C. E. Jones and D. Embree, J. Appl. Phys., 47, 5365 (1976).CrossRefGoogle Scholar
  51. 51.
    Y. Nishi, K. Tanaka, and A. Ohwada, Jap. J. Appl. Phys., 11, 85 (1972).CrossRefGoogle Scholar
  52. 52.
    P. J. Caplan, E. H. Poindexter, B. E. Deal, and R. R. Razouk, J. Appl. Phys., 50, 5847 (1979).CrossRefGoogle Scholar
  53. 53.
    R. A. Weeks, ibid, 27, 1376 (1965).Google Scholar
  54. 54.
    D. J. Breed and R. P. Kramer, Solid State Electronics, 19, 897 (1976).CrossRefGoogle Scholar
  55. 55.
    K. O. Jeppson and C. M. Svensson, J. Appl. Phys., 48, 2004 (1977).CrossRefGoogle Scholar
  56. 56.
    S. I. Raider and A. Berman, J. Electrochem. Soc, 125, 629 (1978).CrossRefGoogle Scholar
  57. 57.
    Y. C. Cheng, Progress in Surface Science, Vol. 8, 1977, p. 181.CrossRefGoogle Scholar
  58. 58.
    A. Goetzberger, E. Klausman, and M. J. Schulz, CRC Critical Reviews in Solid State Science, January, 1967, p. 1.Google Scholar
  59. 59.
    R. R. Razouk and B. E. Deal, J. Electrochem. Soc, 126, 1573 (1979).CrossRefGoogle Scholar
  60. 60.
    S. Prussin, S. P. Li, and R. H. Cockrum, Semiconductor Characterization Techniques, The Electrochemical Society, Inc., 1978, p. 357.Google Scholar
  61. 61.
    P. H. Robinson and F. P. Heinam, J. Electrochem. Soc, 118, 141 (1971).CrossRefGoogle Scholar
  62. 62.
    W. M. Werner, ibid, 123, 540 (1976).Google Scholar
  63. 63.
    P. Balk, Electrochemical Society Extended Abstracts, Spring, 1965, Abstract No. 109.Google Scholar
  64. 64.
    A. G. Revesz, J. Electrochem. Soc, 126, 122 (1979).CrossRefGoogle Scholar
  65. 65.
    C. M. Svensson, Ref. 2, p. 328.Google Scholar
  66. 66.
    S. R. Jost and W. C. Johnson, Appl. Phys. Lett., 36, 446 (1980).CrossRefGoogle Scholar
  67. 67.
    D. J. DiMaria, Ref. 2, p. 160.Google Scholar
  68. 68.
    B. L. Gregory and C. W. Gwyn, Proc IEEE, 62, 1264 (1974).CrossRefGoogle Scholar
  69. 69.
    C. T. Sah, IEEE Trans. Nuc Sci., NS-23, 1563 (1976).CrossRefGoogle Scholar
  70. 70.
    R. A. Gdula, IEEE Trans. Elec. Dev., ED-26, 644 (1979).CrossRefGoogle Scholar
  71. 71.
    C. W. Gwyn, J. Appl. Phys., 40, 4886 (1969).CrossRefGoogle Scholar
  72. 72.
    H. L. Hughes, R. D. Baxter, and B. Phillips, IEEE Trans. Nuc. Sci., NS-19, 256 (1972).CrossRefGoogle Scholar
  73. 73.
    R. J. Powell and G. F. Derbenwick, ibid, NS-18, 99 (1971).Google Scholar
  74. 74.
    G. F. Derbenwick and B. L. Gregory, ibid, NS-22, 2151 (1975).Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Dennis W. Hess
    • 1
    • 2
  1. 1.Material and Molecular Research DivisionLawrence Berkeley LaboratoryBerkeleyUSA
  2. 2.Department of Chemical EngineeringUniversity of CaliforniaBerkeleyUSA

Personalised recommendations