Role of Interfacial Defect Creation-Annihilation Processes at Grain Boundaries on the Diffusional Creep of Polycrystalline Alumina

  • Y. Ikuma
  • R. S. Gordon
Part of the Materials Science Research book series (MSR, volume 14)


It is generally assumed in the diffusional creep of a polycrystalline solid that grain boundaries act as perfect sources and sinks for lattice defects. However, if this assumption is not valid, then diffusional creep can become rate limited by interfacial defect reactions at grain boundaries1–2 Steady state diffusional creep data will be presented at 1450–1500°C for polycrystalline alumina doped with Ti and a Mg-Ti co-dopant, which are consistent with interfacial controlled kinetics over an intermediate grain size range. A new type of creep deformation map will be presented which reveals the range of grain sizes and impurity concentrations over which interfacial defect creation and/or annihilation processes are important in the steady state creep of polycrystalline alumina.


Creep Rate Boundary Diffusion Stress Exponent Lattice Diffusion Steady State Creep 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. M. Cannon, W. H. Rhodes and A. H. Heuer, J. Amer. Ceram. Soc, 63:46 (1980).CrossRefGoogle Scholar
  2. 2.
    B. Burton and G. L. Reynolds, Acta Met., 21:1073 (1973).CrossRefGoogle Scholar
  3. 3.
    M. F. Ashby, Scripta Met., 3:837 (1969).CrossRefGoogle Scholar
  4. 4.
    B. Burton, Mater. Sci. Eng., 10:9 (1972).CrossRefGoogle Scholar
  5. 5.
    Ya. Ye. Guguzin, Phys. Met. Metallog., 36:106 (1973).Google Scholar
  6. 6.
    R. M. Cannon, “Diffusional Creep and Grain Boundary Sliding in A12O3,” Sc.D. Dissertation, M.I.T., Cambridge, Massachusetts (1975).Google Scholar
  7. 7.
    M. F. Ashby and R. A. Verrall, Acta Met., 21:149 (1973).CrossRefGoogle Scholar
  8. 8.
    R. S. Gordon in “Mass Transport Phenomena in Ceramics,” eds. A. R. Cooper and A. H. Heuer, pp. 445–464, Plenum Press, N. Y. (1975).CrossRefGoogle Scholar
  9. 9.
    R. S. Gordon, J. Amer. Ceram. Soc., 56:147 (1973).CrossRefGoogle Scholar
  10. 10.
    Y. Oishi and W. D. Kingery, J. Chem. Phys., 33: 480 (1960).CrossRefGoogle Scholar
  11. 11.
    P. A. Lessing and R. S. Gordon, J. Mater. Sci., 12:2291 (1977).CrossRefGoogle Scholar
  12. 12.
    G. W. Hollenberg and R. S. Gordon, J. Amer. Ceram. Sec, 56:140 (1973).CrossRefGoogle Scholar
  13. 13.
    Y. Ikuma, “The Effect of Mixed Transition-Metal Dopants on the High Temperature Creep of Polycrystalline Alumina,” Ph.D. Dissertation, University of Utah, Salt Lake City, Utah (1980).Google Scholar
  14. 14.
    G. W. Hollenberg, G. R. Terwilliger and R. S. Gordon, J. Amer. Ceram. Soc, 54:196 (1971).Google Scholar
  15. 15.
    L. D. Hou, S. K. Tiku, H. A. Wang and F. A. Kroger, J. Mater. Sci., 14:877 (1979).CrossRefGoogle Scholar
  16. 16.
    R. C. Gifkins, J. Amer. Ceram. Soc, 51:69 (1968).CrossRefGoogle Scholar
  17. 17.
    T. G. Langdon, Philos. Mag., 22:689 (1970).CrossRefGoogle Scholar
  18. 18.
    S. K. Roy and R. L. Coble, J. Amer. Ceram. Soc, 51:1 (1968).CrossRefGoogle Scholar
  19. 19.
    W. D. McKee, Jr. and E. Aleshin, J. Amer. Ceram. Soc, 46:54 (1963).CrossRefGoogle Scholar
  20. 20.
    E. R. Winkler, J. F. Sarver and I. B. Cutler, J. Amer. Ceram. Soc, 49:634 (1966).CrossRefGoogle Scholar
  21. 21.
    R. M. Cannon and R. L. Coble, in “Deformation of Ceramic Materials,” eds. R. C. Bradt and R. E. Tressler, p. 61, Plenum Press, N. Y. (1975).CrossRefGoogle Scholar
  22. 22.
    R. Raj and M. F. Ashby, Trans. AIME, 2:1113 (1971).Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Y. Ikuma
    • 1
  • R. S. Gordon
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of UtahSalt Lake CityUSA

Personalised recommendations