Advertisement

Elastic Creep of Brittle Ceramics with Special Reference to Creep by Crack Growth in Aluminum Oxide

  • D. P. H. Hasselman
  • A. Venkateswaran
  • C. Shih
Part of the Materials Science Research book series (MSR, volume 14)

Abstract

Elastic creep by crack growth is proposed as a mechanism of creep in polycrystalline ceramics. An analysis shows that in aluminum oxide, creep by crack growth can occur in coarse-grained microstructures and a range of temperature over which contributions of other creep mechanisms to the total creep strain are negligible.

Keywords

Creep Rate Crack Size Crack Density Creep Mechanism Slow Crack Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Hirsch and D. Warrington, Phil. Mag. 6, (1961), 735.CrossRefGoogle Scholar
  2. 2.
    C. R. Barrett and W. D. Nix, Acta Met., 13, (1965), 1247.CrossRefGoogle Scholar
  3. 3.
    J. Weertman, Trans. ASM, 61, (1968), 681.Google Scholar
  4. 4.
    J. Weertman, J. Appl. Phys., 28, (1957), 362.CrossRefGoogle Scholar
  5. 5.
    T. G. Langdon, Phil. Mag., 22, (1970), 689.CrossRefGoogle Scholar
  6. 6.
    R. Raj and M. F. Ashby, Met. Trans., 2, (1971), 1113.CrossRefGoogle Scholar
  7. 7.
    F. R. N. Nabarro, Phys. Soc, London, (1948), 75.Google Scholar
  8. 8.
    C. Herring, J. Appl. Phys., 21, (1950), 437.CrossRefGoogle Scholar
  9. 9.
    R. L. Coble, J. Appl. Phys., 34, (1963), 1679.CrossRefGoogle Scholar
  10. 10.
    C. Gandhi and M. F. Ashby, Acta Met., 27, (1979), 1565.CrossRefGoogle Scholar
  11. 11.
    J. D. Hodge, P. A. Lessing and R. S. Gordon, J. Mat. Sci., 12, (1977), 1598.CrossRefGoogle Scholar
  12. 12.
    T. G. Langdon and F. A. Mohamed, J. Mat. Sci., 13, (1978), 473.CrossRefGoogle Scholar
  13. 13.
    J. T. A. Roberts and J. C. Voglewede, J. Am. Cer. Soc, 56, (1973), 472.CrossRefGoogle Scholar
  14. 14.
    G. H. Edward and M. F. Ashby, Acta Met., 27, (1979), 1505.CrossRefGoogle Scholar
  15. 15.
    W. Beere, Acta Met., 28, (1980), 143.CrossRefGoogle Scholar
  16. 16.
    D. P. H. Hasselman, J. Am. Cer. Soc, 52 [9], (1969), 517.CrossRefGoogle Scholar
  17. 17.
    A. G. Evans and A. Rana, Acta Met., 28[2], (1980), 129.CrossRefGoogle Scholar
  18. 18.
    J. M. Birch, B. Wilshire, D. J. R. Owen and D. Shantaram, J. Mat. Sci., 11, (1976), 1817.CrossRefGoogle Scholar
  19. 19.
    Introduction to Ceramics, 2nd Ed., (1976), p. 808.Google Scholar
  20. 20.
    J. Weertman, Trans. ASM, 62, (1969), 502.Google Scholar
  21. 21.
    F. F. Lange, Int. J. of Fracture, 12 [5], (1976), 739.Google Scholar
  22. 22.
    D. P. H. Hasselman; in Ceramics in Severe Environments, Plenum Press, N.Y., (1974), p. 647.Google Scholar
  23. 23.
    R. Dutton; in Fracture Mechanics of Ceramics, Vol. 2, Plenum Press, N.Y., (1974), p. 647.CrossRefGoogle Scholar
  24. 24.
    Tze-jer Chuang, K. I. Kagawa, J. R. Rice and L. B. Sills, Acta Met., 27, (1979), 265.CrossRefGoogle Scholar
  25. 25.
    K. Sadananda, Met. Trans. A, 9A, (1978), 635.CrossRefGoogle Scholar
  26. 26.
    T. G. Langdon, Metals Forum, 1 [2], (1978), 59.Google Scholar
  27. 27.
    W. M. Robertson, J. Nucl. Mat., 30, (1969), 36.CrossRefGoogle Scholar
  28. 28.
    A. G. Evans, M. Linzer and L. R. Russell, Mat. Sci. and Eng., 15, (1974), 253.CrossRefGoogle Scholar
  29. 29.
    D. A. Krohn, P. A. Urick, D. P. H. Hasselman and T. G. Langdon, J. Appl. Phys., 45 [9], (1974), 3729.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • D. P. H. Hasselman
    • 1
  • A. Venkateswaran
    • 1
  • C. Shih
    • 1
  1. 1.Department of Materials EngineeringVirginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations