Advertisement

Development of Phases in In Situ-Reacted Mullite-Zirconia Composites

  • J. S. Wallace
  • N. Claussen
  • M. Rühle
  • G. Petzow
Part of the Materials Science Research book series (MSR, volume 14)

Abstract

For years it has been known that intimate mixtures of alumina (A12O3) and zircon (ZrSiO4) powders react at high temperatures to form mullite solid solution (3 A12O ·2 SiO2 to 2 A12O3 · SiO2) and zirconia (ZrO2). Due to the excellent high temperature strength, chemical inertness, thermal shock resistance and low thermal conductivity this reaction has been used in the production of high temperature refractories1. Work in the alumina-silica system (see for example ref. 2) has shown that pure mullite, when completely reacted and free of amorphous phase, is capable of producing bodies of extraordinary high temperature strength, subject to the limitations that most ceramics have, ie, brittleness. Recent work 3–7 has shown, however, that incorporation of zirconia particles into ceramic bodies, either in the monoclinic or tetragonal phase modification, is capable of greatly increasing the toughness and strength.

Keywords

Electron Energy Loss Spectroscopy Tetragonal Zirconia Tetragonal Symmetry Zirconia Particle Monoclinic Zirconia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E.A. Thomas, French Patent 1, 320, 994 (1963)Google Scholar
  2. 2.
    P.C. Dokko, J.A. Pask and K.S. Mazdiyasni, High Temperature Mechanical Properties of Mullite under Compression, J. Am. Ceram. Soc. 60:150 (1977)CrossRefGoogle Scholar
  3. 3.
    R.C. Garvie, Ceramic Steel?, Nature (London) 258: 5537 (1975)CrossRefGoogle Scholar
  4. 4.
    N. Claus sen, Stress-Induced Transformation of Tetragonal ZrO2 Particles in Ceramic Matrices, J. Am. Ceram. Soc. 61: 85 (1978)CrossRefGoogle Scholar
  5. 5.
    N. Claussen, Fracture Toughness of A12O3 with an Unstabilized ZrO2-Dispersed Phase, ibid 59: 49 (1976)Google Scholar
  6. 6.
    D.L. Porter, A.G. Evans and A.H. Heuer, Transformation-Toughening in Partially-Stabilized Zirconia (PSZ), Acta Metall. 27: 1649 (1979)CrossRefGoogle Scholar
  7. 7.
    N. Claussen, J. Steeb and R.F. Pabst, Effect of Induced Micro-cracking on the Fracture Toughness of Ceramics, J. Am. Ceram. Soc. 56: 559 (1977)Google Scholar
  8. 8.
    N. Claussen and J. Jahn, Mechanical Properties of Sintered In-Situ-Reacted Mullite-Zirconia Composites, ibid 63: 229 (1980)Google Scholar
  9. 9.
    E. Di Rupo, E. Siltart, T.G. Carruthers and R.J. Brook, Reaction Hot-Pressing of Zircon-Alumina Mixtures, J. Mat. Sci. 14: 705 (1979)CrossRefGoogle Scholar
  10. 10.
    E. Di Rupo and M.R. Anseau, Solid State Reactions in the ZrO2-SiO2 — A12O3 System, ibid 15: 111 (1980)Google Scholar
  11. 11.
    C.C. Sorrell and C.A. Sorrell, The A12O3-SiO2 Liquidus Surface: A Discussion, J. Am. Ceram. Soc. 60: 93 (1977)CrossRefGoogle Scholar
  12. 12.
    R.C. Garvie and P.S. Nicholson, Phase Analysis in Zirconia Systems, ibid 55: 6 303 (1972)Google Scholar
  13. 13.
    C.E. Curtis and H.G. Sowman, Investigation of the Thermal Dissociation, Reassociation and Synthesis of Zircon, ibid 36: 190 (1953)Google Scholar
  14. 14.
    Powder Diffraction File, Card. Nr. 15-776, Joint Committee on Powder Diffraction Standards, Swarthmore, Pa.Google Scholar
  15. 15.
    I. Patzak and H.D. Werner, Untersuchungen zur Charakerisierung von Standards für die quantitative röntgenographische Phasenanalyse, Ber. Dt. Keram. Ges. 54: 345 (1977)Google Scholar
  16. 16.
    F.F. Lange, Stress-Induced Phase Transformations: Theory of Phase Retention and Fracture Toughness, Technical Report Nr. 6, Rockwell International Science Center, October 1979Google Scholar
  17. 17.
    C.A. Sorrell and C.C. Sorrell, Subsolidus Equilibria and Stabilization of Tetragonal ZrO2 in the System ZrO2-A12O3-SiO2, J. Am. Ceram. Soc. 60: 495 (1977)CrossRefGoogle Scholar
  18. 18.
    N. Claussen and M. Riihle, Design of Zirconia Toughened Ceramics, submitted to Advances in Ceramics, Proc. First Intern. Conf. on Zirconia, June 16–18th, 1980, CWRU, Cleveland, OhioGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • J. S. Wallace
    • 1
  • N. Claussen
    • 1
  • M. Rühle
    • 1
  • G. Petzow
    • 1
  1. 1.Max-Planck-Institut für Metallforschung Institut für Werkstoffwissenschaften — PMLStuttgart 80W.-Germany

Personalised recommendations