Imaging Techniques for Acoustic Microscopy of Microelectronic Circuits

  • R. L. Hollis
  • R. Hammer
Part of the Acoustical Imaging book series (ACIM, volume 10)


Following the work of Lemons and Quate1, an 800 MHz acoustic microscope has been constructed, operating in the reflection mode for examination of microelectronic materials and devices. To aid in the interpretation of the acoustic images, a method has been developed which produces false color acoustic micrographs of high quality. This technique, along with derivative and logarithmic processing is applied to the acoustic examination of plated structures on organic/ceramic substrates. A standard optical microscope is operated in tandem with the acoustic microscope to allow convenient and absolute comparison between the optical and acoustic images.


Focal Position Metal Line Acoustic Information Acoustic Microscopy Scanning Acoustic Microscope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. A. Lemons and C. F. Quate, Appl. Phys. Lett. 25, 251 (1974).ADSCrossRefGoogle Scholar
  2. 2.
    For a brief description of our acoustic microscope, particularly the microwave and digital voice-coil scanning electronics, see R. L. Hollis and R. Hammer, in Proceedings of the International Symposium on Scanned Image Microscopy, The Royal Society, London, September 1980, Academic Press, (to be published).Google Scholar
  3. 3.
    R. G. Wilson, R. D. Weglein, and D. M. Bonnell, in Semiconductor Silicon 1977, Proc. 77(2), ed. by H. R. Huff and E. Sirtl, Electrochemical Society, Princeton, 431 (1977).Google Scholar
  4. 4.
    R. D. Weglein and R. G. Wilson, Electronics Lett. 14 (12), 352 (1978).ADSCrossRefGoogle Scholar
  5. 5.
    A. Atalar, J. Appl. Phys. 49 (10), 5130 (1978).ADSCrossRefGoogle Scholar
  6. 6.
    W. Parmon and H. L. Bertoni, Electronics Lett. 15 (21), 684 (1979).CrossRefGoogle Scholar
  7. 7.
    R. A. Lemons and C. F. Quate, Science 188, 905 (1975).ADSGoogle Scholar
  8. 8.
    H. K. Wickramasinghe and J. Heiserman, Electronics Lett. 13 (25), 776 (1977).CrossRefGoogle Scholar
  9. 9.
    H. K. Wickramasinghe and M. Hall, Electronics Lett. 12(24), 637 (1976).Google Scholar
  10. 10.
    J. Attal and G. Cambon, Electronics Lett. 14 (15), 472 (1978).ADSCrossRefGoogle Scholar
  11. 11.
    W L. Bond, C. C. Cutler, R. A. Lemons, and C. F. Quate, Appl. Phys. Lett. 27 (5), 270 (1975).ADSCrossRefGoogle Scholar
  12. 12.
    V. B. Jipson, Ph.D. dissertation, Stanford University, 1979.Google Scholar
  13. 13.
    A dynamic leveling system due to D. Rugers was implemented by V. B. Jipson [see Ref. 11].Google Scholar
  14. 14.
    U. S. Patent No. 4,028,933, R. A. Lemons and C. F. Quate, (1977).Google Scholar
  15. 15.
    Nevertheless, it should be possible using a multiple-frequency technique to obtain color micrographs containing depth information derived from the frequency dependence of the V(z) function (V. B. Jipson, private communication).Google Scholar
  16. 16.
    In addition to side-by-side acoustical and optical presentations, superposition of acoustical and optical micrographs on a color TV monitor in which each image is color-coded is briefly discussed by L. W. Kessler, J. Acoust. Soc. Am. 55 (5), 909 (1974).Google Scholar
  17. 17.
    R. C. Addison (unpublished).Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • R. L. Hollis
    • 1
  • R. Hammer
    • 1
  1. 1.IBM Thomas J. Watson Research CenterYorktown HeightsUSA

Personalised recommendations