Investigation of a Liquid Crystal Acousto-Optic Conversion Cell

  • W. Hamidzada
  • S. Letcher
  • S. Candau
Part of the Acoustical Imaging book series (ACIM, volume 10)


An acousto-optic conversion cell using nematic liquid crystals provides a low-cost method for planar detection of an ultrasonic radiation field. Although the information received is somewhat rudimentary, in some cases it could be considered as a replacement for an array of transducers. Nematic liquid crystals are fluids that, because of the long-range order of the orientation of their long molecules, are optically uniaxial. Proper surface treatment of a substrate will cause the molecules--and the optic axis--to align normal to the surface, and a thin layer of material between two treated glass plates will have uniform alignment throughout the volume with the optic axis normal to the plates. This is the usual configuration of an acousto-optic conversion cell. When placed between crossed polarizers, light at normal incidence is blocked, but mechanical (or electrical) perturbations will cause the optic axis to tip and light to be transmitted. Because of the weakness of the elastic restoring forces for orientational distortions, very weak perturbations are observable.


Liquid Crystal Optic Axis Duty Cycle Nematic Liquid Crystal Pulse Height 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. Zolina, Trudy Lomonosov Inst. Akad. Nauk. SSSR 8, 11 (1936).Google Scholar
  2. 2.
    L.W. Kessler and S.T. Sawyer, Appl. Phys. Lett. 17, 440 (1970).ADSCrossRefGoogle Scholar
  3. 3.
    H. Mailer, K.L. Likins, T.R. Taylor and J.L. Fergason, Appl. Phys. Lett. 18, 105 (1971).ADSCrossRefGoogle Scholar
  4. 4.
    P.Greguss, Acustica 29, 52 (1973).Google Scholar
  5. 5.
    K. Miyano and Y.R. Shen, Appl. Phys. Lett. 28, 473 (1976).ADSCrossRefGoogle Scholar
  6. 6.
    S. Nagai, A. Peters,and S. Candau, Rev. Phys. Appl. (Paris) 12, 21 (1977).CrossRefGoogle Scholar
  7. 7.
    C. Sripaipan, C.F. Hayes, and G.T. Fang, Phys. Rev. 15A, 1297 (1977).ADSGoogle Scholar
  8. 8.
    S. Letcher, J. Lebrun,and S. Candau, J. Acoust. Soc. Am. 63, 55 (1978).ADSCrossRefGoogle Scholar
  9. 9.
    S. Nagai and K. Iizuka, Japan J. Appl. Phys. 17, 723 (1978);ADSCrossRefGoogle Scholar
  10. S. Nagai and K. Iizuka, Mol. Cryst. Liq. Cryst. 45, 83 (1978).Google Scholar
  11. 10.
    J. Lebrun, S. Candau,and S. Letcher, J. Phys. (Paris), Colloq. C3, 40, C3–298 (1979).Google Scholar
  12. 11.
    C.F. Hayes, Mol. Cryst. Liq. Cryst. 59, 317 (1980).CrossRefGoogle Scholar
  13. 12.
    J.N. Perbet, M. Hareng,and S. Leberre, Rev. Phys. Appl. (Paris) 14, 569 (1979).CrossRefGoogle Scholar
  14. 13.
    S. Candau, A. Ferre, A. Peters, G. Waton, and P. Pieranski, Mol. Cryst. Liq. Cryst., to be published.Google Scholar
  15. 14.
    J.L. Dion, J. Appl. Phys. 50, 2965 (1979).ADSCrossRefGoogle Scholar
  16. 15.
    W. Nyborg, in “Physical Acoustics”, vol. IIB, W.P. Mason, ed., Academic Press, New York (1968).Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • W. Hamidzada
    • 1
    • 2
  • S. Letcher
    • 1
    • 2
  • S. Candau
    • 1
    • 2
  1. 1.Department of PhysicsUniv. of Rhode IslandKingstonUSA
  2. 2.Univ. Louis PasteurStrasbourgFrance

Personalised recommendations