Advertisement

Optical Bistability in a GaAs Etalon

  • H. M. Gibbs
  • S. L. McCall
  • T. N. C. Venkatesan
  • A. Passner
  • A. C. Gossard
  • W. Wiegmann

Abstract

The first observation of optical bistability in a passive semiconductor etalon is reviewed. The bistable etalon consists of a GaA1As-GaAs-GaA1As molecular-beam epitaxially-grown sandwich with 90% reflectivity coatings. The bistability is primarily dispersive with the nonlinear refractive index arising from light-induced changes in exciton absorption. Using light of frequency just below the exciton peak, we observed bistability from 5 to 120°K. The holding intensity was about 1 mW/μm2, and switching times of < 1 ns turn-on and 40 ns turn-off have been achieved. This device illustrates the use of a material resonance and optical cavity to reduce the holding intensity and switching energy. Further reductions are anticipated by further miniaturization and device development. The possibility of utilizing bistable devices in high-speed optical processing and computing motivates the development of these semiconductor etalons.

Keywords

Nonlinear Refractive Index Optical Bistability Exciton Absorption Material Resonance GaAs Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, and W. Wiegmann, CLEA 1979 (IEEE J. Quantum Electron. QE-15, 108D (1979)) and Appl. Phys. Lett. 35, 451 (1979).Google Scholar
  2. 2.
    H. M. Gibbs, S. L. McCall, A. C. Gossard, A. Passner, W. Wiegmann, and T. N. C. Venkatesan in “Laser Spectroscopy IV,” H. Walther and K. W. Rothe, eds., Springer-Verlag, Berlin (1979), p. 441.Google Scholar
  3. 3.
    H. M. Gibbs, A. C. Gossard, S. L. McCall, A. Passner, W. Wiegmann and T. N. C. Venkatesan, Solid State Commun. 30, 271 (1979).ADSCrossRefGoogle Scholar
  4. 4.
    H. M. Gibbs, T. N. C. Venkatesan, S. L. McCall,A. Passner, A. C. Gossard, and W. Wiegmann, Appl. Phys. Lett. 34, 511 (1979).ADSCrossRefGoogle Scholar
  5. 5.
    T. N. C. Venkatesan, H. M. Gibbs, S. L. McCall, A. Passner, A. C. Gossard, and W. Wiegmann, (a) IEEE J. Quantum Electron QE-15, 8D (1979) and (b) Opt. Commun. 31, 228 (1979).Google Scholar
  6. 6.
    H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, (a) Optics News 5, 6 (1979) and (b) Optical Engineering, to be published.Google Scholar
  7. 7.
    H. M. Gibbs, S. M. McCall and T. N. C. Venkatesan, U. S. Patents 4,012,699 and 4, 121, 167.Google Scholar
  8. 8.
    J. Shah, R. F. Leheny, and C. Lin, Solid State Commun. 18, 1035 (1976).ADSCrossRefGoogle Scholar
  9. 9.
    C. V. Shank, R. L. Fork, R. F. Leheny, and J. Shah, Phys. Rev. Lett. 42, 112 (1979).ADSCrossRefGoogle Scholar
  10. 10.
    D. A. B. Miller, S. D. Smith, and A. Johnston, Appl. Phys. Lett. 35, 658 (1979); D. A. B. Miller and S. D. Smith, Opt. Commun. 31, 101 (1979).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • H. M. Gibbs
    • 1
  • S. L. McCall
    • 1
  • T. N. C. Venkatesan
    • 1
  • A. Passner
    • 1
  • A. C. Gossard
    • 1
  • W. Wiegmann
    • 1
  1. 1.Bell LaboratoriesMurray HillUSA

Personalised recommendations