Advertisement

Instabilities in Optical Bistability:Transform from CW to Pulsed

  • R. Bonifacio
  • M. Gronchi
  • L. A. Lugiato

Abstract

This paper reviews the results obtained by our group on the stationary solution for OB in a ring cavity and on the instabilities that can arise in these solutions. First, we solve exactly and analytically the Maxwell-Bloch equations with the proper boundary conditons both in the absorptive and in dispersive case, both for homogeneous broadening and for Lorentzian inhomogeneous broadening. In the limit αL → 0, T → 0, with αL/T arbitrary, the exact solution reduces to the previously calculated mean field state equation. In this case, we give explicit analytic bistability conditions which show in particular that the purely absorptive case is the one in which one finds the largest hysteresis cycle. On the other hand, the exact solution shows that the mean field limit case is the optimal situation to observe bistability. In fact, an increase of T causes a decrease of the size of the cycle, until for T large enough the bistable behavior disappears. We show also that under suitable conditions a part of the curve of transmitted vs. incident light with positive slope can become unstable. In the dispersive case, this situation can occur also in the absence of bistability, whereas in the purely absorptive case this instability can arise only in bistable situations, and precisely in the high transmission branch of the hysteresis cycle. When there is instability the system either precipitates to the low transmission branch, thereby producing a net reduction of the cycle, or evolves towards an undamped spiking situation (self-pulsing). In the latter case, the system works as an all-optical device which transforms CW light into pulsed light. We give analytic instability conditions in the case aL ≪ 1, T ≪ 1 (mean field limit, again!), in which the dynamics of the system is governed by the modes of the cavity. The self-pulsing instability occurs when the nonlinear dynamics of the system transfers part of the incident energy from the resonant mode to other cavity modes, thereby producing the spiking behavior. Hence, with respect to these off-resonance modes, the system behaves as a type of laser that works without population inversion. Finally, we have analyzed the instabilities in the case of a Fabry-Perot. It turns out that self-pulsing is much more difficult to be achieved than in the case of the ring cavity.

Keywords

Ring Cavity Incident Field Optical Bistability Mean Field Theory Hysteresis Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Szoke, V. Daneu, J. Goldhar and N. A. Kurnit, Appl.Phys. Lett. 15, 376 (1969); see also J. W. Austin and L. G. Deshazer, J. Opt. Soc. Am. 61, 650 (1971); E. Spiller, J. Appl.Phys. 43, 1673 (1972) and H. Seidel, US Patent 3,610, 731 (1971).ADSCrossRefGoogle Scholar
  2. 2.
    S. L. McCall, Phys. Rev. A9, 1515 (1974).ADSGoogle Scholar
  3. 3.
    H. M. Gibbs, S. L. McCall and T. N. C. Venkatesan, Phys. Rev. Lett. 36, 1135 (1976).ADSCrossRefGoogle Scholar
  4. 4.
    F. S. Felber and J. H. Marburger, Appl.Phys. Lett. 28, 731 (1976) and Phys. Rev. A17, 335 (1978).ADSCrossRefGoogle Scholar
  5. 5.
    R. Bonifacio and L. A. Lugiato, Opt. Commun. 19, 172 (1976).ADSCrossRefGoogle Scholar
  6. 6.
    P. W. Smith and E. H. Turner, Appl.Phys. Lett. 30, 280 (1977).ADSCrossRefGoogle Scholar
  7. 7.
    T. N. C. Venkatesan and S. L. McCall, Appl.Phys. Lett. 30, 282 (1977).ADSCrossRefGoogle Scholar
  8. 8.
    T. Bishofberger and Y. R. Shen, Appl.Phys. Lett. 32, 156 (1978) and Phys. Rev. A19, 1169 (1979); D. Grischkowsky, J. Opt. Soc. Am. 68, 641 (1978).ADSCrossRefGoogle Scholar
  9. 9.
    E. Garmire, J. H. Marburger, S. D. Alien and H. G. Winful, Appl. Phys. Lett. 34, 374 (1979).ADSCrossRefGoogle Scholar
  10. 10.
    H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner and W. Wiegmann, Appl.Phys. Lett. 35, 451 (1979).ADSCrossRefGoogle Scholar
  11. 11.
    D. A. B. Miller, S. D. Smith and A. Johnston, Appl.Phys. Lett. 35, 658 (1979).ADSCrossRefGoogle Scholar
  12. 12.
    W. J. Sand le and A. Gallagher, in this volume.Google Scholar
  13. 13.
    E. Arimondo, A. Gozzini, L. Lovitch and E. Pistelli, in this volume.Google Scholar
  14. 14.
    R. Bonifacio and L. A. Lugiato in “Coherence and Quantum Optics IV,” Ed. by L. Mandel and E. Wolf, Plenum Publishing Co., New York, 1977 and Phys. Rev. A18, 1129 (1978).Google Scholar
  15. 15.
    G. S. Agarwal, L. M. Narducci, D. H. Feng and R. Gilmore, in “Coherence and Quantum Optics IV,” Ed. by L. Mandel and E. Wolf, Plenum Publishing Co., New York, 1977.Google Scholar
  16. 16.
    H. J. Carmichael and D. F. Walls, Journ. of Phys. B10, L685 (1977).Google Scholar
  17. 17.
    C. R. Willis, Opt. Comm. 23, 151 (1977).ADSCrossRefGoogle Scholar
  18. 18.
    F. T. Arecchi and A. Politi, Lett. Nuovo Cimento 23, 65 (1978).CrossRefGoogle Scholar
  19. 19.
    R. Bonifacio and L. A. Lugiato, Phys. Rev. Lett. 40, 1023, 1538 (1978).ADSCrossRefGoogle Scholar
  20. 20.
    G. S. Agarwal, L. M. Narducci, R. Gilmore and D. H. Feng, Opt. Lett. 2, 88 (1978); Phys. Rev. A18, 620 (1978); 20, 545 (1979).ADSCrossRefGoogle Scholar
  21. 21.
    L. A. Lugiato, Nuovo Cimento B50, 89 (1979).ADSGoogle Scholar
  22. 22.
    G. S. Agarwal and S. P. Tewari, Phys. Rev. A, in press.Google Scholar
  23. 23.
    F. Casagrande and L. A. Lugiato, Nuovo Cimento B55, 173 (1980).ADSGoogle Scholar
  24. 24.
    R. Bonifacio, M. Gronchi and L. A. Lugiato, Phys. Rev. A18, 2266 (1978).ADSGoogle Scholar
  25. 25.
    C. R. Willis, Opt. Commun. 26, 62 (1978).ADSCrossRefGoogle Scholar
  26. 26.
    A. Schenzle and H. Brandt, Opt. Commun. 27, 85 (1978) and 31, 401 (1979).CrossRefGoogle Scholar
  27. 27.
    F. T. Arecchi and A. Politi, Opt. Commun. 29, 361 (1979).ADSCrossRefGoogle Scholar
  28. 28.
    R. F. Gragg, W. C. Schieve and A. R. Bulsara, Phys. Lett. A68, 294 (1978) and Phys A68, 294 (1978) and Phys. Rev. A19, 2052 (1979).ADSGoogle Scholar
  29. 29.
    P. D. Drummond and D. F. Walls, Journ. Phys. A13, 725 (1980); J. Chrostowski and A. Zardecki, Opt. Commun. 29, 230 (1979).Google Scholar
  30. 30.
    L. A. Lugiato, J. Farina and L. M. Narducci, Phys. Rev., A22, 253 (1980).ADSGoogle Scholar
  31. 31.
    P. Hanggi, A. R. Bulsara and R. Janda, Phys. Rev. A, in press.Google Scholar
  32. 32.
    R. Bonifacio and P. Meystre, Opt. Commun. 27, 147 (1978); 29, 131 (1978).ADSCrossRefGoogle Scholar
  33. 33.
    P. Meystre and H. Hopf, Opt. Commun. 29, 235 (1979).ADSCrossRefGoogle Scholar
  34. 34.
    V. Benza and L. A. Lugiato, Lett. Nuovo Cimento 26, 405 (1979).ADSCrossRefGoogle Scholar
  35. 35.
    F. Hopf, P. Meystre, P. D. Drummond and D. F. Walls, Opt. Commun. 31, 245 (1979).ADSCrossRefGoogle Scholar
  36. 36.
    R. Bonifacio and L. A. Lugiato, Lett. Nuovo Cimento 21, 517 (1978).CrossRefGoogle Scholar
  37. 37.
    S. S. Hassan, P. D. Drummond and D. F. Walls, Opt. Commun. 27, 480 (1978).ADSCrossRefGoogle Scholar
  38. 38.
    G. P. Agrawal and H. J. Carmichael, Phys. Rev. A19, 2074 (1979).MathSciNetADSGoogle Scholar
  39. 39.
    R. Bonifacio, M. Gronchi and L. A. Lugiato, Nuovo Cimento B53, 311 (1979).ADSGoogle Scholar
  40. 40.
    P. Schwendimann, Journ. of Physics 12, A, L 39 (1979).Google Scholar
  41. 41.
    C. M. Bowden and C. C. Sung, Phys. Rev. A19, 2392 (1979); and C. M. Bowden, this volume.ADSGoogle Scholar
  42. 42.
    C. R. Willis and J. Day, Opt. Commun. 28, 137 (1979).ADSCrossRefGoogle Scholar
  43. 43.
    S. P. Tewari, Opt. Acta 26, 145 (1979).ADSCrossRefGoogle Scholar
  44. 44.
    R. Bonifacio and L. A. Lugiato, Lett. Nuovo Cimento 21, 505 (1978).CrossRefGoogle Scholar
  45. 45.
    R. Bonifacio, L. A. Lugiato and M. Gronchi in “Laser Spectroscopy IV,” Ed. By H. Walther and W. K. Rothe, Springer-Verlag, 1979.Google Scholar
  46. 46.
    K. Ikeda, Opt. Commun. 30, 257 (1979).ADSCrossRefGoogle Scholar
  47. 47.
    R. Roy and M. S. Zubairy, in press.Google Scholar
  48. 48.
    M. Gronchi and L. A. Lugiato, Opt. Lett,. 5, 108 (1980).ADSCrossRefGoogle Scholar
  49. 49.
    P. Meystre, Opt. Commun. 26, 277 (1978).ADSCrossRefGoogle Scholar
  50. 50.
    J. A. Fleck, Jr., Appl. Phys. Lett. 13, 365 (1968).ADSCrossRefGoogle Scholar
  51. 51.
    F. Abraham, R. K. Bullough and S. S. Hassan, Opt. Comm. 29, 109 (1979) and 32 (1980).ADSCrossRefGoogle Scholar
  52. 52.
    R. Roy and M. S. Zubairy, Opt. Commun. 32, 163 (1980) and Phys. Rev. A21, 274 (1980).ADSCrossRefGoogle Scholar
  53. 53.
    H. J. Carmichael, Opt. Acta 27, 147 (1980).CrossRefGoogle Scholar
  54. 54.
    J. A. Hermann, Opt. Acta 27, 159 (1980).ADSCrossRefGoogle Scholar
  55. 55.
    H. J. Carmichael and J. A. Hermann, Zeit. f. Physik, 38, 365 (1980).MathSciNetCrossRefGoogle Scholar
  56. 56.
    M. B. Spencer and W. E. Lamb Jr., Phys. Rev. A5, 884 (1972). Note however that the laser with injected signal is not bistable.ADSGoogle Scholar
  57. 57.
    S. L. McCall and H. M. Gibbs, Opt. Commun. 33, 335 (1980).ADSCrossRefGoogle Scholar
  58. 58.
    R. Bonifacio and L. A. Lugiato, Lett. Nuovo Cimento 21, 510 (1978).CrossRefGoogle Scholar
  59. 59.
    R. Bonifacio, M. Gronchi and L. A. Lugiato, Opt. Commun. 30, 129 (1979).ADSCrossRefGoogle Scholar
  60. 60.
    S. L. McCall, Appl. Phys. Lett. 32, 284 (1978).ADSCrossRefGoogle Scholar
  61. 61.
    H. M. Gibbs, S. L. McCall and T. N. C. Verkatesan, Optics News, Summer 1979.Google Scholar
  62. 62.
    H. Haken, Phys. Lett. 53A, 77 (1975).ADSGoogle Scholar
  63. 63.
    H. Risken and K. Nummedal, Journ. Appl. Phys. 49, 4662 (1968).ADSCrossRefGoogle Scholar
  64. 64.
    R. Graham and H. Haken, Zeits. f. Physik 213, 420 (1968).ADSCrossRefGoogle Scholar
  65. 65.
    An example of chaotic behavior is given in Ref. 46 for a case of dispersive multistability. The nature of this behavior is completely different from that of our self-pulsing behavior. In fact, the instability that leads to chaos in Ref. 46 never arises in the absorptive case.Google Scholar
  66. 66.
    M. Gronchi, V. Benza, L. A. Lugiato, P. Meystre and M. Sargent III, submitted for publication.Google Scholar
  67. 67.
    L. A. Lugiato, Opt. Commun. 33, 108 (1980).ADSCrossRefGoogle Scholar
  68. 68.
    F. Casagrande, L. A. Lugiato and M. L. Asquini, Opt. Commun. 32, 492 (1980).ADSCrossRefGoogle Scholar
  69. 69.
    M. Sargent III, Sov. J. Quantum Electronics, in press.Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • R. Bonifacio
    • 1
  • M. Gronchi
    • 1
  • L. A. Lugiato
    • 1
  1. 1.Istituto di Fisica dell ’UniversitàMilanoItaly

Personalised recommendations