Advertisement

Applications of the Generalized P-Representation to Optical Bistability

  • P. D. Drummond

Abstract

The generalized (non-diagonal) coherent state representation is defined for photons and atoms as a basis for quantum theories of optical bistability. Theorems on existence properties and time-ordered operator products are given. This is used to derive Fokker-Planck equations that describe fluctuations in various different optical bistability experiments. A comparison of the physical applicability of these Fokker-Planck equations is used to select the theory that best describes different types of experiments.

Keywords

Quantum Fluctuation Polarization Variable Optical Bistability Nonlinear Polarizability Gaussian Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. J. Glauber, Phys. Rev. 131, 2766 (1963); E. C. G. Sudarshan, Phys. Rev. Lett. 10, 277 (1963).MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    H. J. Carmichael and D. F. Walls, J. Phys. B9, 1199; L43 (1976); H. J. Kimble, M. Dagenais, L. Mandel, Phys. Rev. Lett. 39, 691 (1977).MathSciNetADSGoogle Scholar
  3. 3.
    H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, Phys. Rev. Lett. 36, 1135 (1976); T. N. C. Venkatesan and S. L. McCall, Appl. Phys. Lett. 30, 282 (1977); D. Grischkowsky, J. Opt. Soc. Am. 68, 641 (1978); T. Bischofberger and Y. R. Shen, J. Opt. Soc. Am. 68, 642 (1978); H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, W. Wiegmann, Appl. Phys. Lett. 35, 451 (1979); D. A. B. Miller, S. D. Smith, A. Johnston, Appl. Phys. Lett. 35, 658 (1979).ADSCrossRefGoogle Scholar
  4. 4.
    A. Szoke, V. Daneu, S. Goldhar and N. A. Kurnit, Appl. Phys. Lett. 15, 376 (1969); S. L. McCall, Phys. Rev. A9, 1515 (1974); R. Bonifacio and L. A. Lugiato, Phys. Rev. A18, 1129 (1978); R. Bonifacio, M. Gronchi and L. A. Lugiato, Phys. Rev. A18, 2266 (1978); C. R. Willis, Opt. Comm. 26, 62 (1978); G. S. Agarwal, L. M. Narducci, R. Gilmore and D. H. Feng, Phys. Rev. A18, 620 (1978); J. Hermann, Optica Acta 27, 159 (1980).ADSCrossRefGoogle Scholar
  5. 5.
    P. D. Drummond, D. Phil. Thesis (University of Waikato, 1979); P. D. Drummond and C. W. Gardiner, J. Phys. A13, 2353 (1980).Google Scholar
  6. 6.
    H. Haken, “Handbuch der Physik”, Vol. XXV/2c (Springer, Berlin, 1970 ); W. H. Louiseil, “Quantum Statistical Properties of Radiation” ( Wiley, New York, 1973 ).Google Scholar
  7. 7.
    L. Arnold, “Stochastic Differential Equations” ( Wiley, New York, 1974 ).MATHGoogle Scholar
  8. 8.
    L. A. Lugiato, Nuovo Cimento 59B, 89 (1979).ADSGoogle Scholar
  9. 9.
    J. H. Marburger and F. S. Felber, Phys. Rev. A17, 335 (1978); N. Bioembergen, Opt. Comm. 15, 416 (1975).Google Scholar
  10. 10.
    P. D. Drummond and D. F. Walls, J. Phys. A13, 725 (1980), P. D. Drummond and D. F. Walls (to appear).Google Scholar
  11. 11.
    R. Bonifacio and L. A. Lugiato, Lett. Nuovo Cimento 21, 517 (1978); S. S. Hassan, P. D. Drummond and D. F. Walls, Opt. Commun. 27, 480 (1978); G. P. Agarwal and H. J. Carmichael, Phys. Rev. A19, 2074 (1979); R. Bonifacio, M. Gronchi and L. A. Lubiato, Nuovo Cimento 53B, 311 (1979); R. Roy and M. S. Zubairy, Phys. Rev. A21, 274 (1980).CrossRefGoogle Scholar
  12. 12.
    F. A. Hopf, P. Meystre, P. D. Drummond, and D. F. Walls, Opt. Comm. 31, 245 (1979).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • P. D. Drummond
    • 1
  1. 1.Department of Physics and AstronomyUniversity of RochesterRochesterUSA

Personalised recommendations