Theory of Plane Wave Reflection and Refraction by the Nonlinear Interface

  • A. E. Kaplan


This report includes a review of published as well as recent results. In previous papers a new kind of optical bi-stability was proposed which is connected with reflection and refraction of light by a single surface on a nonlinear medium without a resonator or feedback; its first experimental observations were made recently by Smith et al. The main conditions required for its existence are very exact matching of the optical densities of both media and almost grazing incidence of light. These effects are available for positive nonlinearity as well as for negative non-linearity. In the last case, it is possible to excite a new kind of nonlinear wave (longitudinally inhomogeneous travelling waves) which could provide a phenomenon of strong nonlinear parallax of refracted rays along the interface. For more simple observation and some applications of reflection bistability, the use of an electro-optic element as an “artificial” nonlinearity can be proposed; this light-feedback method is analogous to that used in hybrid devices. Our last result is connected with a proposition for a new way to realize reflection bistability which consists of application of single-mode optical waveguides (one of which must be nonlinear) rather than using two semi-infinite media. This allows us to avoid the secondary effects of self-focusing and self-bending of bounded refracted beams of light in a nonlinear medium. At the same time it conserves all features of the main phenomenon of reflection bistability.


Nonlinear Medium Total Internal Reflection Optical Bistability Incident Light Intensity Nonlinear Waveguide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. E. Kaplan, JETP Lett. 24, 114 (1976)ADSGoogle Scholar
  2. 2.
    A. E. Kaplan, Sov. Phys. JETP 45, 896 (1977).Google Scholar
  3. 3.
    a) P. W. Smith, J.-P. Hermann, W. J, Tomlinson and P. J. Maloney, Appl. Phys. Lett. 35, 846 (1979); b) P. W. Smith, W. J. Tomlinson, this volume.ADSCrossRefGoogle Scholar
  4. 4.
    V. S. Butylkin, A. E. Kaplan, Yu. G. Khronopulo and E. I. Yakubovich, Resonant Interaction of Light with Matter, Nauka, Moscow (1977), p. 331 (to be translated into English by Springer).Google Scholar
  5. 5.
    N. N. Rosanov, Sov. Tech. Phys. Lett, a) 3, (1977); b) 4, 30 (1978).Google Scholar
  6. 6.
    B. B. Boiko, I. Z. Dzhilavdari and N. S. Petrov, J. Appl. Spectr. 23, 1511 (1975).ADSCrossRefGoogle Scholar
  7. 7.
    A. E. Kaplan, Sov. J. of Quantum Electronics 8, 95 (1978).CrossRefGoogle Scholar
  8. 8.
    A. E. Kaplan, Proceedings of the 9th National Conference on Coherent and Nonlinear Optics, pp. 238 and 241, 1978, Leningrad-Moscow.Google Scholar
  9. 9.
    A. E. Kaplan, Radiophysics and Quantum Electronics 22, 229 (1979).ADSCrossRefGoogle Scholar
  10. 10.
    V. A. Permyakov and O. V. Bagdasaryan, Radiophysics and Quantum Electronics 21, 92 (1978).Google Scholar
  11. 11.
    N. N. Rosanov, Optics and Spectroscopy 47, 335 (1979).ADSGoogle Scholar
  12. 12.
    A. A. Kolokolov and A. I. Sukov, Radiophysics and Quantum Electronics 21, 1013 (1978).ADSCrossRefGoogle Scholar
  13. 13.
    D. Marcuse, Appl. Opt. (to be published).Google Scholar
  14. 14.
    W. J. Tomlinson, Opt. Lett., 5, 323 (1980).ADSCrossRefGoogle Scholar
  15. 15.
    A. E. Kaplan, XI IQEC, Boston, MA., U.S.A. (1980) paper T-10; A. E. Kaplan, Appl. Phys. Lett,, to be published.Google Scholar
  16. 16.
    H. Seidel, U. S. Patent No. 3, 610, 731 (1969).Google Scholar
  17. 17.
    A. Szoke, V. Daneu, T. Goldhar and N. A. Kurnit, Appl. Phys. Lett. 15, 376 (1969).ADSCrossRefGoogle Scholar
  18. 18.
    H. M. Gibbs, S. L. McCall and T. N. C. Venkatesan, Phys. Rev. Lett. 36, 1135 (1976).ADSCrossRefGoogle Scholar
  19. 19.
    H. M. Gibbs, S. L. McCall and T. N. C. Venkatesan, Optics News/ Summer, (1979).Google Scholar
  20. 20.
    F. S. Felber and J. H. Marburger, Appl. Phys. Lett. 28, 731 (1976).ADSCrossRefGoogle Scholar
  21. 21.
    C. M. Bowden and C. C. Sung, Phys. Rev. A19, 2392 (1979); C. M. Bowden, XI IQEC, Boston, MA., U.S.A. (1980) and this volume.ADSGoogle Scholar
  22. 22.
    N. Bloembergen and D. S. Pershan, Phys. Rev. 128, 606 (1962); N. Bloembergen and J. Ducuing, Phys. Lett. 6, 5 (1963).MathSciNetADSMATHCrossRefGoogle Scholar
  23. 23.
    V. S. Butylkin, A. E. Kaplan and Yu. G. Khronopulo, Sov. Phys. JETP 32, 501 (1971) and 34, 276 (1972).ADSGoogle Scholar
  24. 24.
    P. L. Kelley, Phys. Rev. Lett. 15, 1004 (1965); R. Y. Chiao, E. Garmire and C. U. Townes, Phys. Rev. Lett. 13, 479 (1964); G. A. Askaryan, Sov. Phys. JETP 15, 1088 (1962).ADSCrossRefGoogle Scholar
  25. 25.
    A. E. Kaplan, JETP. Lett. 9, 33 (1969).ADSGoogle Scholar
  26. 26.
    P. W. Smith and E. H. Turner, Appl. Phys. Lett. 30, 280 (1977).ADSCrossRefGoogle Scholar
  27. 27.
    A. E. Kaplan, to be published.Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • A. E. Kaplan
    • 1
  1. 1.Francis Bitter National Magnet LaboratoryMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations