Optical Bistability Based Upon Atomic Correlation in a Small Volume

  • C. M. Bowden


A model for optical bistability which emphasizes the effects of atomic pair correlation in a small volume is presented. A unitary transformation is introduced to remove the explicit time dependence of the original Hamiltonian and an ensemble representation for the system is imposed by introducing a ficticious, (“spin”) temperature in the rotating frame. The ensemble averages have the effect, in the results, of breaking the J2-symmetry intrinsic to the Hamiltonian. Adiabatic elimination of the field variables in the mean-field limit leads to a mean-field, atomic-level Stark-shift-dependent interatomic interaction. We use this retarded dipole-dipole interaction in a small volume, to de-rive the properties of the quasi-thermodynamic ensemble representing the system in the rotating frame, and obtain the equation of state relating the externally-applied field y to the internal field x and the inverse of the effective temperature βs. The equation shows hysteresis and bistability among the three quantities x, y, and βs for suitable values of the parameters in the model. Stability conditions in the hysteresis zone in the limit of a single radiation field mode are analyzed and the optical spectrum is derived. The results predict intrinsic mirrorless optical bistability in a small volume.


Effective Temperature Interatomic Interaction Internal Field Optical Bistability Stark Shift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. M. Bowden and C. C. Sung, Phys. Rev. A19, 2392 (1979).ADSGoogle Scholar
  2. 2.
    R. H. Dicke, Phys. Rev. 93, 99 (1954).ADSMATHCrossRefGoogle Scholar
  3. 3.
    P. W. Milonni and P. S. Knight, Phys. Rev. A10, 1096 (1974).ADSGoogle Scholar
  4. 4.
    G. Banfi and R. Bonifacio, Phys. Rev. A12, 2068 (1975).ADSGoogle Scholar
  5. 5.
    L. M. Narducci and C. M. Bowden, J. Phys. A9, L75 (1976).ADSGoogle Scholar
  6. 6.
    P. D. Drummond and H. J. Carmichael, Opt. Comm. 27, 160 (1978).ADSCrossRefGoogle Scholar
  7. 7.
    H. J. Carmichael, “Analytical and Numerical Results for the Steady State in Cooperative Resonance Fluorescence,” to be published.Google Scholar
  8. 8.
    R. Bonifacio and L. A. Lugiato, Lett, al Nuovo Cim. 21, 505 (1978).CrossRefGoogle Scholar
  9. 9.
    R. Bonifacio and L. A. Lugiato, Phys. Rev. A18, 1129 (1978).ADSGoogle Scholar
  10. 10.
    R. Gilmore, C. M. Bowden and L. M. Narducci, Phys. Rev. A12, 1019 (1975); in “Quantum Statistics and the Many-Body Problem,” edited by S. B. Trickey, W. P. Kirk, and J. W. Dufty, Plenum, New York, 1975, p. 249.ADSGoogle Scholar
  11. 11.
    A. Abragam, “The Principles of Nuclear Magnetism,” Oxford University, London, 1961, Chapter V, XII B.Google Scholar
  12. 12.
    D. N. Zubarev, Usp. Fiz. Nauk. 71, 71 (1960) [Sov. Phys. Usp. 3, 320 (1960)].Google Scholar
  13. 13.
    H. J. Carmichael and D. F. Walls, J. Phys. B10, L685 (1977).ADSGoogle Scholar
  14. 14.
    R. Gilmore and C. M. Bowden, Phys. Rev. A13, 1898 (1976); in “Cooperative Effects in Matter and Radiation,” edited by C. M. Bowden, D. W. Howgate and H. R. Robl, Plenum, New York, 1977, p. 335.Google Scholar
  15. 15.
    R. Gilmore and C. M. Bowden, J. Math Phys. (NY) 17, 1617 (1976).MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    C. M. Bowden and C. C. Sung, J. Phys. A11, 151 (1978).MathSciNetADSGoogle Scholar
  17. 17.
    L. D. Landau and E. M. Lifshitz, “Electrodynamics of Continuous Media,” Addison-Wesley, Reading, MA (1966), p. 54.Google Scholar
  18. 18.
    R. J. Glauber, Phys. Rev. 130, 2529 (1963).MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    B. R. Mollow, Phys. Rev. 188, 1969 (1969).ADSCrossRefGoogle Scholar
  20. 20.
    C. C. Sung and C. M. Bowden, J. Phys. A12, 2273 (1979) and references contained therein.ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • C. M. Bowden
    • 1
  1. 1.Research Directorate, U.S. Army Missile LaboratoryU.S. Army Missile CommandRedstone ArsenalUSA

Personalised recommendations