Advertisement

Short- and Long-Time Transient Evolution in Absorptive Optical Bistability

  • J. D. Farina
  • L. M. Narducci
  • J. M. Yuan
  • L. A. Lugiato

Abstract

We discuss the time evolution of an absorptive bistable device driven by a resonant external field. The dynamics of a bistable system perturbed from a steady state configuration is characterized by two widely separated time scales: one, of the order of a few cavity relaxation times, brings the system to a metastable state; the other is responsible for the attainment of the final steady state, and is typically much longer as long as the only source of fluctuations is the internal quantum noise. Explicit analytic expressions have been obtained for the rates of decay associated with both relaxation processes.

Keywords

Optical BISTABILITY Tunneling Process Escape Time Bistable System Driving Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Bonifacio and L. A. Lugiato, Lett, al Nuovo Cimento 21, 505 (1978), and references quoted therein.Google Scholar
  2. 2.
    R. Bonifacio and L. A. Lugiato, Phys. Rev. Lett. 40, 1023, 1538 (1978); R. Bonifacio, M. Gronchi, and L. A. Lugiato, Phys. Rev. A18, 2266 (1978).ADSCrossRefGoogle Scholar
  3. 3.
    R. Bonifacio and L. A. Lugiato, Phys. Rev. A18, 1129 (1978); G. S. Agarwal, L. M. Narducci, D. H. Feng, and R. Gilmore in Proceedings of the Fourth Rochester Conference on Coherence and Quantum Optics, Edited by L. Mandel and E. Wolf (Plenum Press, New York, 1978); C. R. Willis, Opt. Comm. 23, 151 (1977); 26, 62 (1978); A. Schenzle and H. Brand, Opt. Comm. 27, 85 (1978); 31, 401 (1979); R. F. Gragg, W. C. Schieve, and A. R. Bulsara, Phys. Rev. A19, 2052 (1979); P. D. Drummond and D. F. Walls, J. Phys. B13, 725 (1980).ADSGoogle Scholar
  4. 4.
    A. Schenzle and H. Brand, Opt. Comm. 27, 485 (1978).ADSCrossRefGoogle Scholar
  5. 5.
    A. Schenzle and H. Brand, Phys. Rev. A20, 1628 (1979).ADSGoogle Scholar
  6. 6.
    a) L. A. Lugiato, J. D. Farina and L. M. Narducci, Phys. Rev. A22, 253 (1980); (b) L. A. Lugiato, J. D. Farina, L. M. Narducci and J. M. Yuan, Opt. Eng. (to be published).ADSGoogle Scholar
  7. 7.
    R. L. Stratonovich, Topics in the Theory of Random Noise, (Gordon and Breach, New York, 1963). Also for a review of the first passage time problem in the context of the theory of multistate relaxation processes, see: I Oppenheim, K. E. Shuler, and G. H. Weiss, Adv. Mol. Rel. Proc. 1, 13 (1967- 68); G. H. Weiss, Adv. Chem. Phys. 13, 1 (1966).Google Scholar
  8. 8.
    R. Bonifacio and L. A. Lugiato, Opt. Comm. 19, 172 (1976).ADSCrossRefGoogle Scholar
  9. 9.
    H. A. Kramers, Physics (Utrecht), 7, 284 (1940).MathSciNetADSMATHCrossRefGoogle Scholar
  10. 10.
    R. Landauer, J. Appl. Phys. 33, 2209 (1962); N. G. van Kampen, J. Stat. Phys. 17, 71 (1977); A. Schenzle and H. Brand, Phys. Lett. A68, 427 (1978); M. Morsch, H. Risken and H. D. Vollmer, Z. Phys. B32, 245 (1979).ADSCrossRefGoogle Scholar
  11. 11.
    R. Bonifacio, L. A. Lugiato, J. D. Farina and L. M. Narducci, IEEE J. Quant. El. (to be published).Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • J. D. Farina
    • 1
  • L. M. Narducci
    • 1
  • J. M. Yuan
    • 1
  • L. A. Lugiato
    • 2
  1. 1.Department of Physics and Atmospheric ScienceDrexel UniversityPhiladelphiaUSA
  2. 2.Istituto di Scienze FisicheUniversità di MilanoMilanoItaly

Personalised recommendations