The Role of Phases in the Transient Dynamics of Nonlinear Interferometers

  • J. D. Cresser
  • P. Meystre


Under appropriate conditions, the light intensity transmitted by an interferometer filled with a non-linear medium and irradiated by a resonant or near-resonant driving field exhibits one or many hysteresis cycles, and optical bi- or multi-stability.

In this paper, we analyze the response of such systems to sudden changes in the driving field. The existence of anomalous thresholds shows that it is not sufficient in general to consider the standard intensity-out vs. intensity-in curves. Rather, a detailed analysis of the phase-space of the system must be carried out. We discuss the cases of absorptive and dispersive bistability. We show that in all cases, the phase of the driving field plays an essential role.

This high sensitivity to phases leads in particular to the question of the effect of phase-noise in the driving field. We present preliminary results on this problem.


Lower Branch Transient Dynamic Phase Fluctuation Driving Field Hysteresis Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Seidel, U. S. Patent No. 3610731 (1971); A. Szoke, V. Daneu and N. A. Kurnit, Appl. Phys. Letters 15, 376 (1969).Google Scholar
  2. 2.
    S. L. McCall, Phys. Rev. A9, 1515 (1974).ADSGoogle Scholar
  3. 3.
    H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, Phys. Rev. Letters 36, 1135 (1976).ADSCrossRefGoogle Scholar
  4. 4.
    R. Bonifacio and L. Lugiato, Optics Conraiun. 19, 172 (1976); Phys. Rev. A18, 1129 (1978).ADSCrossRefGoogle Scholar
  5. 5.
    For recent lists of references, see in particular the review papers by H. M. Gibbs Et. al., and by R. Bonifacio Et. al., in “Laser Spectroscopy IV,” H. Walther and K. Rothe, Eds., Springer-Verlag, Berlin (1979); and H. M. Gibbs, S. L. McCall and T. N. C. Venkatesan, Optics News, Summer 1979.Google Scholar
  6. 6.
    See in particular, R. Bonifacio and P. Meystre, Optics Commun. 29, 131 (1979); F. A. Hopf and P. Meystre, Optics Commun. 29, 235 (1979), and references therein.Google Scholar
  7. 7.
    F. A. Hopf, P. Meystre, P. D. Drummond and D. F. Walls, Optics Commun. 31, 245 (1979).ADSCrossRefGoogle Scholar
  8. 8.
    F. A. Hopf and P. Meystre, Optics Commun. 33, 225 (1980).ADSCrossRefGoogle Scholar
  9. 9.
    R. Bonifacio and L. Lugiato, Lett. Nuovo Cimento 21, 517 (1978). At steady-state, Eq. (2.1) is a particular case of their Eq. ( 21 ). See also L. Lugiato, M. Milani, W. H. Louisell and P. Meystre, in preparation.CrossRefGoogle Scholar
  10. 10.
    See, for instance, M. Sargent III, M. O. Scully and W. E. Lamb, Jr., “Laser Physics,” Addison-Wesley (1974).Google Scholar
  11. 11.
    P. D. Drummond and D. F. Walls, preprint.Google Scholar
  12. 12.
    L. A. Lugiato, Nuovo Cimento 50B, 89 (1979).ADSGoogle Scholar
  13. 13.
    K. Kondo, M. Mabuchi and B. Hasegawa, Optics Commun. 32, 136 (1980).ADSCrossRefGoogle Scholar
  14. 14.
    Note added in proof: in real lasers, frequency fluctuations due to the jitter of the resonator are likely to give the main contribution to the line width (S. F. Jacobs, private communication). In this context, see the analysis of frequency switching by F. A. Hopf and S. Shakir, this volume.Google Scholar
  15. 15.
    See also the Panel Discussion, this volume and in particular the comments of J. Farina.Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • J. D. Cresser
    • 1
  • P. Meystre
    • 1
  1. 1.Projektgruppe für LaserforschungMax Planck Gesellschaft zur Förderung der Wissenschaften e.V.Deutschland

Personalised recommendations