Advertisement

Absorptive and Dispersive Bistability for a Doppler-Broadened Medium in a Fabry-Perot: Steady-State Description

  • H. J. Carmichael
  • G. P. Agrawal

Abstract

We present a steady-state theory for absorptive and dispersive bistability using a Doppler-broadened two-level medium in a Fabry-Perot. Details in the saturating Doppler line reflect the mode structure of the standing-wave cavity. However the qualitative effects of Doppler-broadening on transmission characteristics are understood in general terms which apply also to non-Doppler inhomogeneous broadening in a Fabry-Perot and inhomogeneous broadening in a ring cavity. The approximate treatment of Doppler-broadening using a truncated Bloch hierarchy is compared with our theory which treats the Bloch hierarchy to all orders.

Keywords

Continue Fraction Transmission Characteristic Nonlinear Susceptibility Optical Bistability Cavity Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Seidel, U. S. Patent No. 3610731.Google Scholar
  2. 2.
    A. Szoke, V. Daneu, J. Goldhar, and N. A. Kurnit, Appl. Phys. Lett. 15, 376 (1969).ADSCrossRefGoogle Scholar
  3. 3.
    J. W. Austin and L. G. DeShazer, J. Opt. Soc. Am. 61, 650 (1971).Google Scholar
  4. 4.
    E. Spiller, J. Opt. Soc. Am. 61, 669 (1971); J. Appl. Phys. 43, 1673 (1972).Google Scholar
  5. 5.
    S. L. McCall, Phys. Rev. A9, 1515 (1974).ADSGoogle Scholar
  6. 6.
    H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, Phys. Rev. Lett. 36, 1135 (1976); T. N. C. Venkatesan, Ph.D. thesis, City University of New York (1977) (unpublished).ADSCrossRefGoogle Scholar
  7. 7.
    F. S. Felber and J. H. Marburger, Appl. Phys. Lett. 28, 732 (1976); J. H. Marburger and F. S. Felber, Phys. Rev. A17, 335 (1978).Google Scholar
  8. 8.
    T. N. C. Venkatesan and S. L. McCall, Appl. Phys. Lett. 30, 282 (1977); H. M. Gibbs, T. N. C. Venkatesan, S. L. McCall, A. Passner, A. C. Gossard, and W. Weigmann, Appl. Phys. Lett. 34, 511 (1979); 35, 451 (1979).ADSCrossRefGoogle Scholar
  9. 9.
    P. W. Smith, E. H. Turner, and P. J. Maloney, IEEE J. Quantum Electron. QE14, 207 (1978); P. W. Smith, I. P. Kaminow, P. J. Maloney, and L. W. Stulz, Appl. Phys. Lett. 22, 24 (1978); 34, 62 (1979); P. W. Smith, J. P. Hermann, W. J. Tomlinson, and P. J. Maloney, Appl. Phys. Lett. 3, 846 (1979).ADSCrossRefGoogle Scholar
  10. 10.
    E. Garmire, J. H. Marburger, and S. D. Allen, Appl. Phys. Lett. 32, 320 (1978); E. Garmire, S. D. Allen, J. Marburger, and C. M. Verber, Opt. Lett. 3, 69 (1978).ADSCrossRefGoogle Scholar
  11. 11.
    F. T. Arecchi and A. Politi, Lett. Nuovo Cimento 23, 65 (1978).CrossRefGoogle Scholar
  12. 12.
    P. D. Drummond, K. J. McNeil, and D. F. Walls, Opt. Commun. 28, 255 (1979).ADSCrossRefGoogle Scholar
  13. 13.
    T. Bischofberger and Y. R. Shen, Opt. Lett. 4, 40 (1979); Phys. Rev. A19, 1169 (1979).ADSCrossRefGoogle Scholar
  14. 14.
    D. A. B. Miller and S. D. Smith, Opt. Commun. 31, 101 (1979); D. A. B. Miller, S. D. Smith, and A. Johnston, Appl. Phys. Lett. 35, 658 (1979).ADSCrossRefGoogle Scholar
  15. 15.
    A. Feldman, Opt. Lett. 4, 115 (1979).ADSCrossRefGoogle Scholar
  16. 16.
    W. Sohler, Appl. Phys. Lett. 36, 351 (1980).ADSCrossRefGoogle Scholar
  17. 17.
    R. Bonifacio and L. A. Lugiato, Opt. Commun. 19, 172 (1976); Phys. Rev. A18, 1129 (1978).ADSCrossRefGoogle Scholar
  18. 18.
    R. Bonifacio and L. A. Lugiato, Lett. Nuovo Cimento 21, 517 (1978); R. Bonifacio, M. Gronchi, and L. A. Lugiato, Nuovo Cimento B53, 311 (1979).CrossRefGoogle Scholar
  19. 19.
    S. S. Hassan, P. D. Drummond, and D. F. Walls, Opt. Commun. 27, 480 (1978).ADSCrossRefGoogle Scholar
  20. 20.
    G. P. Agrawal and H. J. Carmichael, Phys. Rev. A19, 2074 (1979).MathSciNetADSGoogle Scholar
  21. 21.
    P. Schwendimann, J. Phys. A12, L39 (1979).ADSGoogle Scholar
  22. 22.
    H. J. Carmichael and D. F. Walls, J. Phys. B10, L685 (1977); S. S. Hassan and D. F. Walls, J. Phys. A11, L87 (1978); D. F. Walls, P. D. Drumnond, S. S. Hassan, and H. J. Carmichael, Prog. Theor. Phys. Suppl. 64, 307 (1978); P. D. Drummond, D. Phil, thesis, University of Waikato (1979) (unpublished).ADSGoogle Scholar
  23. 23.
    R. Bonifacio and L. A. Lugiato, Phys. Rev. Lett. 40, 1023 (1978) M. Gronchi and L. A. Lugiato, Lett. Nuovo Cimento 23, 593 (1978); L. A. Lugiato, Nuovo Cimento B50, 80 (1979).ADSCrossRefGoogle Scholar
  24. 24.
    L. M. Narducci, R. Gilmore, D. H. Feng and G. S. Agarwal, Opt. Lett. 2, 88 (1978), G. S. Agarwal, L. M. Narducci, R. Gilmore and D. H. Feng, Phys. Rev. A18, 620 (1978); Phys. Rev. A21 1029 (1980).ADSCrossRefGoogle Scholar
  25. 25.
    C. R. Willis, Opt. Commun. 23, 151 (1977); 26, 62 (1978); C. R. Willis and J. Day, Opt. Commun. 28, 137 (1979).ADSCrossRefGoogle Scholar
  26. 26.
    F. Casagrande and L. A. Lugiato, Nuovo Cimento (to be published)Google Scholar
  27. 27.
    A. R. Bulsara, W. C. Schieve, and R. F. Gragg, Phys. Lett. 68A, 294 (1978); Phys. Rev. A19, 2052 (1979).ADSGoogle Scholar
  28. 28.
    A. Schenzle and H. Brand, Opt. Commun. 27, 485 (1978); 31, 401 (1979).ADSCrossRefGoogle Scholar
  29. 29.
    F. T. Arecchi and A. Politi, Opt. Commun. 29, 361 (1979).ADSCrossRefGoogle Scholar
  30. 30.
    K. Kondo, M. Mabuchi, and H. Hasegawa, Opt. Commun. 32, 136 (1980).ADSCrossRefGoogle Scholar
  31. 31.
    R. Bonifacio and P. Meystre, Opt. Commun. 27, 147 (1978); 29, 131 (1979).ADSCrossRefGoogle Scholar
  32. 32.
    F. A. Hopf and P. Meystre, Opt. Commun. 29, 235 (1979).ADSCrossRefGoogle Scholar
  33. 33.
    F. A. Hopf, P. Meystre, P. D. Drummond, and D. F. Walls, Opt. Commun. 31, 245 (1979).ADSCrossRefGoogle Scholar
  34. 34.
    V. Benza and L. A. Lugiato, Lett. Nuovo Cimento 26, 405 (1979).ADSCrossRefGoogle Scholar
  35. 35.
    If quantitative comparisons are to be made it is important to keep track of the notational conventions of different authors One possible source of confusion is different definitions for normalized incident and transmitted field amplitudes all designated by Y and X. For a clarification see Eqs. (54), (74), (83) and their context in ref. 42. Different definitions for the absorption coefficient a are also used; see the footnote in ref. 42.Google Scholar
  36. 36.
    R. Bonifacio and L. A. Lugiato, Lett. Nuovo Cimento 21, 505 (1978); R. Bonifacio, L. A. Lugiato, and M. Gronchi, Theory of Optical Bistability, in Laser spectroscopy IV, Proceedings of the Fourth Conference on Laser Spectroscopy, 1979, H. Walther and W. K. Rothe, Eds. ( Springer, Berlin, 1979 ).CrossRefGoogle Scholar
  37. 37.
    H. J. Carmichael, Optica Acta 27, 147 (1980).CrossRefGoogle Scholar
  38. 38.
    J. A. Hermann, Optica Acta 27, 159 (1980).ADSCrossRefGoogle Scholar
  39. 39.
    G. P. Agrawal and H. J. Carmichael, Optica Acta 27, 651 (1980).CrossRefGoogle Scholar
  40. 40.
    P. D. Drummond, D. Phil, thesis, University of Waikato (1979) (unpublished).Google Scholar
  41. 41.
    R. Roy and M. S. Zubairy, Phys. Rev. A21, 274 (1980).ADSGoogle Scholar
  42. 42.
    H. J. Carmichael and J. A. Hermann, Z. Phys. B38, 365 (1980).MathSciNetADSCrossRefGoogle Scholar
  43. 43.
    M. Gronchi and L. A. Lugiato, Opt. Lett. 5, 108 (1980).ADSCrossRefGoogle Scholar
  44. 44.
    S. Stenholm and W. E. Lamb, Jr., Phys. Rev. 181, 618 (1969); Phys. Rev. B1, 15 (1970).ADSCrossRefGoogle Scholar
  45. 45.
    B. J. Feldman and M. S. Feld, Phys. Rev. Al, 1375 (1970).Google Scholar
  46. 46.
    M. Lax, Fluctuations and Coherence Phenomena in Classical and Quantum Physics, in Brandeis University Summer Institute in Theoretical Physics 1966, Statistical Physics, Phase Transitions and Superfluidity, M. Chretien ed. (Gordon and Breach, New York, (1968)).Google Scholar
  47. 47.
    V. S. Letokhov and V. P. Chebotayev, Nonlinear Laser Spectroscopy ( Springer, Berlin, 1977 ).Google Scholar
  48. 48.
    J. H. Shirley, Phys. Rev. A8, 347 (1973).ADSGoogle Scholar
  49. 49.
    P. Meystre, Opt. Commun. 26, 277 (1978).ADSCrossRefGoogle Scholar
  50. 50.
    E. Abraham and R. K. Bullough, Opt. Commun. 29, 109 (1979).ADSCrossRefGoogle Scholar
  51. 51.
    R. Roy and M. S. Zubairy, Opt. Commun. 32, 163 (1980).ADSCrossRefGoogle Scholar
  52. 52.
    E. Abraham, S. S. Hassan, and R. K. Bullough, Opt. Commun. 33, 93 (1980).ADSCrossRefGoogle Scholar
  53. 53.
    E. Abraham and S. S. Hassan (unpublished).Google Scholar
  54. 54.
    H. J. Carmichael and G. P. Agrawal, Opt. Commun. 34, 293 (1980).ADSCrossRefGoogle Scholar
  55. 55.
    A. N. Khovanskii, The Application of Continued Fractions and their Generalizations to Problems in Approximation Theory (P. Noordhoff, Groningen, 1963 ) p. 101.Google Scholar
  56. 56.
    Handbook of Mathematical Functions, M. Abramowitz and I. A. Stegun Eds. ( Dover, New York, 1965 ) p. 363.Google Scholar
  57. 57.
    B. D. Fried and S. D. Conte, The Plasma Dispersion Function, ( Academic Press, New York, 1961 ).Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • H. J. Carmichael
    • 1
  • G. P. Agrawal
    • 2
  1. 1.Center for Studies in Statistical MechanicsUniversity of Texas at AustinAustinUSA
  2. 2.QuantelOrsayFrance

Personalised recommendations