Particle Detectors

  • Konrad Kleinknecht
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 66)


Experimental high-energy physics is based on the ability of the experimenter to detect particles produced in strong, electro magnetic and weak interactions. Detector systems of huge dimensions and very high complexity can be built presently because on-line computers and fast data processing enable permanent control of such big systems. But still the basic principles of detectors are simple and have not changed during the past five years.


Particle Detector Time Projection Chamber Drift Chamber Anode Wire Proportional Chamber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C.W.Fabjan and H.G.Fischer, CERN preprint EP/80–27(1980), to be published in Reports on Progress in PhysicsGoogle Scholar
  2. 2.
    H.A.Bethe, Hdb. Physik 24(1933)518; R.M.Sternheimer and R.F. Peierls, Phys.Rev. B 3 (1971)3081Google Scholar
  3. 3.
    I.Lehraus et al., Nucl.Instr.Methods 153(1978)347CrossRefGoogle Scholar
  4. 4.
    L.D.Landau, J.Exp.Phys. (USSR) 8(1944)201Google Scholar
  5. 5.
    G.Charpak, Ann.Rev.Nucl.Sci. 20(1970)195CrossRefGoogle Scholar
  6. 6.
    G.Charpak et al., Nucl.Instr.Methods 62(1968)235; ibid. 80(1970)13CrossRefGoogle Scholar
  7. 7.
    L.B.Loeb, Basic Processes of Gaseous Electronics, U.Calif. Press, Berkeley 1961Google Scholar
  8. 8.
    H.G.Fischer et al., Proc.Int.Meeting on Prop. and Drift Chambers, Dubua 1975, (JINR) report D 13–9164Google Scholar
  9. 9.
    P.Schilly et al., Nucl.Instr.Methods 91(1971)221CrossRefGoogle Scholar
  10. 10.
    W.Cunitz et al., Nucl.Instr.Methods 91(1971)211CrossRefGoogle Scholar
  11. 11.
    T.Trippe, CERN NP Int.Report 69–18(1969)Google Scholar
  12. 12.
    K.Kleinknecht et al., CERN NP Int.Report 70–18(1970)Google Scholar
  13. 13.
    V.Radeky, IEEE Trans.Nucl.Sci. NS-21(1974)51CrossRefGoogle Scholar
  14. 14.
    G.Charpak et al., Nucl.Instr.Methods 148(1978)471CrossRefGoogle Scholar
  15. 15.
    G.Charpak et al., Nucl.Instr.Methods 80(1970)13CrossRefGoogle Scholar
  16. 16.
    A.H.Walenta et al., Nucl.Instr.Methods 92(1971)373CrossRefGoogle Scholar
  17. 17.
    A.Breskin et al., Nucl.Instr.Methods 119(1974)9CrossRefGoogle Scholar
  18. 18.
    G.Marel et al., Nucl.Instr.Methods 141(1977)43 M.Holder et al., Nucl.Instr.Methods 148(1978)235CrossRefGoogle Scholar
  19. 19.
    D.R.Nygren, LBL Int.Report, Feb.1974; J.N.Marx and D.R.Nygren, Physics today, Oct.1978, p.46.Google Scholar
  20. 20.
    WA 21-Collaboration using BEBC at CERN, Exp. WA 21 (1979)Google Scholar
  21. 21.
    L.Montanet, paper given at xxth Int.Conf. on High En.Physics, Madison, Wisconsin, July 1980Google Scholar
  22. 22.
    L.S.Schröder, Nucl.Instr.Methods 162(1979)395Google Scholar
  23. 23.
    P.Rice-Evans, Spark, Streamer, Proportional and Drift Chambers, London 1974Google Scholar
  24. 24.
    V.Eckhardt, MPI München, private communicationGoogle Scholar
  25. 25.
    M.Dine et al., Fermilab proposal No.490Google Scholar
  26. 26.
    J.Sandweiss, paper given at XXth Int.Conf. on High En.Physics, Madison, Wisconsin, July 1980Google Scholar
  27. 27.
    M.Conversi and A.Gozzini, Nuovo Cim.2(1955)189; M.Conversi and L.Federici, Nucl.Instr.Methods 151(1978)93CrossRefGoogle Scholar
  28. 28.
    F.E.Taylor et al., IEEE Tran.Nucl.Sci. NS 25(1978)312CrossRefGoogle Scholar
  29. 29.
    Valvo Photomultiplier Book, Hamburg, April 1970Google Scholar
  30. 30.
    J.B.Birks, Theory and practice of scintillation counting, London 1964Google Scholar
  31. 31.
    I.B.Berlman, Fluorescence Spectra of Aromatic Molecules, N.Y. and London 1971Google Scholar
  32. 32.
    F.Klawonn, Untersuchungen zur Optimierung der Szintillations-zähler für den Einsatz in einem Hadronkalorimeter, Universität Dortmund, Januar 1980Google Scholar
  33. 33.
    R.C.Garwin, Rev.Sci.Instr. 31(1960)1010CrossRefGoogle Scholar
  34. 34.
    B.Barish et al., Very large area scintillation counters for hadron calorimetry, IEEE Trans.Nucl.Sci. NS.25(1978)532CrossRefGoogle Scholar
  35. 35.
    H.P.Klasen, Diplomarbeit Universität Dortmund 1978Google Scholar
  36. 36.
    P.A.Cerenkov, I.M.Frank and I.E.Tamm, Nobel Lectures in Physics, New York, Elsevier 1964Google Scholar
  37. 37.
    M.Cantin et al., Nucl.Instr.Methods 118(1974)177CrossRefGoogle Scholar
  38. 38.
    J.Litt and R.Meunier, Ann.Rev.Nucl.Sci. 23 (1973)JCrossRefGoogle Scholar
  39. 39.
    V.L.Ginzburg and I.M.Frank, IETP 16(1946)15Google Scholar
  40. 40.
    X.Artru et al., Phys.Rev. D 12(1975)1289; C.W.Fabjan and W.Struczinski, Phys.Lett. 57 B(1975)484CrossRefGoogle Scholar
  41. 41.
    G.M.Garibian, Proc.5th Int.Conf, in Instrumentation for High En.Physi, Frascati 1973, p.329Google Scholar
  42. 42.
    J.Cobb et al., Nucl.Instr.Methods 140(1977)413CrossRefGoogle Scholar
  43. 43.
    M.Deutschmann et al., Particle identification using the angular distribution of transition radiation, Preprint CERN EP/80–155, Aug.1980Google Scholar
  44. 44.
    Particle Data Group, Phys.Lett. 75 B(1978)1CrossRefGoogle Scholar
  45. 45.
    G.Bathow et al., Nucl.Phys. B 20(1970)592CrossRefGoogle Scholar
  46. 46.
    M.Holder et al., Nucl.Instr.Methods 151(1978)69CrossRefGoogle Scholar
  47. 47.
    C.W.Fabjan et al., Nucl.Instr.Methods 141(1977)61CrossRefGoogle Scholar
  48. 48.
    P.Dishaw, Limits on neutrino-like particles, thesis Stanford University, 1979Google Scholar
  49. 49.
    CERN-Dortmund-Heidelberg-Saclay-Collaboration (to be published); J.Rothberg and J.Wotschak, private communicationGoogle Scholar
  50. 50.
    G.Grayer, J.Homer (Rutherford Laboratory), private communicationGoogle Scholar
  51. 51.
    F.Eisele, K.Kleinknecht, D.Pollmann and B.Renk, Dortmund UniversityGoogle Scholar
  52. 52.
    NA 5 Bari-Cracow-Liverpool-München(MPI)-Nijmegen -Collaboration, CERN Proposal SPSC/75–1/P37Google Scholar
  53. 53.
    V.Eckhardt et al., Nucl.Instr.Methods 143(1977)235CrossRefGoogle Scholar
  54. 54.
    UA 1 Aachen-Annecy-Birmingham-CERN-London-Paris-Riverside-Rutherford-Saclay-Vienna -Collaborarion, CERN Proposal SPSC/78–6, SPSC/P92Google Scholar
  55. 55.
    E.Lorenz, private communicationGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Konrad Kleinknecht
    • 1
  1. 1.Institut für PhysikUniversität DortmundDortmundFederal Republic Germany

Personalised recommendations