Advertisement

Properties of Nonequilibrium Superconductors: A Kinetic Equation Approach

  • Jhy-Jiun Chang
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 65)

Abstract

Within the frame work of the BCS theory of superconductivity (Bardeen et al. 1957), a superconductor is a system of three components: The quasiparticles, the phonons, and the paired electrons. In this chapter, we will discuss some of the nonequilibrium properties of superconductors using the kinetic-equation approach. The quasiparticles and phonons will be described by coupled kinetic equations which govern the quasiparticle and phonon distribution functions. The paired electrons are characterized by the energy gap which will be described by a modified gap equation relating the energy gap to the energy spectrum of the quasiparticles. We will use the Golden-Rule approximation in our derivation of the kinetic equations. This approach is simple and brings out clearly the physics involved in the various collision processes. Furthermore, it has been shown that, for all practical purposes, it is equivalent to the more rigorous Green’s function approach (Eliashberg, 1970; Entin-Wohlman and Orbach, 1978).

Keywords

Tunneling Process Quasi Particle Phonon Distribution Sharp Structure Quasiparticle Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambegoakar, V., and Tewordt, L., 1964, Theory of electronic thermal conductivity of superconductors, Phys. Rev., A134:805.ADSCrossRefGoogle Scholar
  2. Bardeen, J., Cooper, L.N., and Schrieffer J.R., 1957, Theory of superconductivity, Phys. Rev., 108:1175.MathSciNetADSMATHCrossRefGoogle Scholar
  3. Bardeen, J., Rickazen, G., and Tewordt, L., 1959, Theory of thermal conductivity of superconductors, Phys. Rev., 113:982.MathSciNetADSMATHCrossRefGoogle Scholar
  4. Bardeen, J., 1961, Tunneling from a many-particle point of view, Phys. Rev. Lett., 6:57ADSCrossRefGoogle Scholar
  5. Bardeen, J., 1962, Tunneling into superconductors, Phys. Rev. Lett., 9:147.ADSMATHCrossRefGoogle Scholar
  6. Chang, Jhy-Jiun, and Scalapino, D.J., 1976, Tunneling as a probe of nonequilibrium superconducting states, Phys. Rev. Lett., 37:522.ADSCrossRefGoogle Scholar
  7. Chang, Jhy-Jiun, 1977, Tunneling characteristic of a nonequilibrium double junction, Phys. Rev. Lett., 39:1352.ADSCrossRefGoogle Scholar
  8. Chang, Jhy-Jiun, 1978, Gap enhancement in superconducting thin film due to quasiparticle injection, Phys. Rev. B, 17:2137.Google Scholar
  9. Chang, Jhy-Jiun, and Scalapino, D.J., 1978, Nonequilibrium superconductivity, J. Low Temp. Phys., 31:1ADSCrossRefGoogle Scholar
  10. Chang, Jhy-Jiun, and Yang, Chi-Chung, 1978, New structure in the tunneling characterictics of a nonequilibrium double junction, Bull. Am. Phys. Soc., 23:263.Google Scholar
  11. Chang, Jhy-Jiun, 1979, Relaxation of the quasiparticle charge imbalance in superconductors, Phys. Rev. B, 19:1420.ADSCrossRefGoogle Scholar
  12. Chang, Jhy-Jiun, Lai, W.Y., and Scalapino, D.J., 1979, T* model of the energy distribution of excitations in nonequilibrium superconductors, Phys. Rev. B, 20:2739.ADSCrossRefGoogle Scholar
  13. Chi, C.C., and Clarke, J., 1979a, Quasiparticle branch mixing rates in superconducting aluminum, Phys. Rev. B, 19:4495.ADSCrossRefGoogle Scholar
  14. Chi, C.C., and Clarke, J., 1979b, Enhancement of the energy gap in superconducting aluminum by tunneling extraction of quasiparticles, Phys. Rev. B, 20:4465.ADSCrossRefGoogle Scholar
  15. Cohen, M.H., Falicov, L. M., and Phillips, J. C., 1962, Superconductive tunneling, Phys. Rev. Lett., 8:316.ADSMATHCrossRefGoogle Scholar
  16. Eliashberg, G. M., 1960, Interactions between electrons and lattice in a superconductor, Zh. Eksp. Teor, Fiz., 38:966Google Scholar
  17. Eliashberg, G. M., 1960, Interactions between electrons and lattice in a superconductor, [Sov. Phys. JETP Lett., 11:696].Google Scholar
  18. Eliashberg, G. M., 1960, Interactions between electrons and lattice in a superconductor, Pisma Zh. Eksp. Teor. Fiz., 11:186Google Scholar
  19. Eliashberg, G. M., 1960, Interactions between electrons and lattice in a superconductor, [Sov. Phys. JETP Lett., 11:114].ADSGoogle Scholar
  20. Entin-Wohlman, O., and Orbach, R., 1978, Mode propagation in superconductors near Tc, Ann. Phys., 116:35ADSCrossRefGoogle Scholar
  21. Entin-Wohlman, O., and Orbach, R., 1979, On the microscopic and Boltzmann equation approaches to nonequilibrium superconductors, Ann Phys., 122:64.MathSciNetADSCrossRefGoogle Scholar
  22. Gray, K. E., 1978, Enhancement of superconductivity by quasiparticle tunneling, Solid State Commun., 26:633.ADSCrossRefGoogle Scholar
  23. Jaworski F., and Parker, W.H., 1979, Experimental determination of the quasiparticle energy distribution in optically perturbed superconducting films, Phys. Rev. B, 20:945.ADSCrossRefGoogle Scholar
  24. Kaplan, S.B., Chi, C.C., Langenberg, D.N., Chang, Jhy-Jiun, Jafarey, S., and Scalapino, D.J., 1976, Quasiparticle and phonon lifetimes in superconductors, Phys. Rev. B, 14:4854ADSCrossRefGoogle Scholar
  25. Errati: 1976, Quasiparticle and phonon lifetimes in superconductors, Phys. Rev. B, 15, 3567 (1977).Google Scholar
  26. Kaplan, S.B. Kirtley, J.R., and Langenberg, D.N., 1977, Phys. Rev. Lett., 39:291.ADSCrossRefGoogle Scholar
  27. Kirtley, J.R., Kent, D.S., Langenberg, D.N., Kaplan, S.B., Chang, Jhy-Jiun, and Yang, Chi-Chung, 1980, Quasiparticle energy distribution and relaxation times in a tunnel injected superconductor, Phys. Rev. B, 22:1218.ADSCrossRefGoogle Scholar
  28. Moody, M.V., and Paterson, J.L., 1980, Quasiparticle Relaxation time in clean Al films, Preprint.Google Scholar
  29. Owen, C.S., and Scalapino, D.J., 1972, Superconducting state under the influence of external dynamic pair breaking, Phys. Rev. Lett. 28:1559.ADSCrossRefGoogle Scholar
  30. Parker, W.H., 1975, Modified heating theory of nonequilibrium superconductors, Phys. Rev. B, 12:3667.ADSCrossRefGoogle Scholar
  31. Parmenter, R.H., 1961, Enhancement of superconductivity by extraction of normal carriers, Phys. Rev. Lett., 7:274.ADSCrossRefGoogle Scholar
  32. Paterson, J.L. 1978, Analysis of nonequilibrium double junctions, J. Low Temp. Phys., 33:285.ADSCrossRefGoogle Scholar
  33. Peskovatskii, S.A., and Seminozhenko, V.P., 1976, Stimulation of superconductivity by constant tunnel currents, Fiz. Nizk. Temp., 2:943Google Scholar
  34. Peskovatskii, S.A., and Seminozhenko, V.P., 1976, Stimulation of superconductivity by constant tunnel currents, [Sov. J. Low. Temp. Phys., 2:464].Google Scholar
  35. Pethick, C.J., and Smith, H., 1979, Relaxation and Collective motion in superconductors; a two fluid description, Ann. Phys., 119:133.ADSCrossRefGoogle Scholar
  36. Prange, R.E., and Kadanoff, L.P., 1964, Transport theory for electron-phonon interaction in metals, Phys. Rev., A134:566.ADSCrossRefGoogle Scholar
  37. Rajeevakuraar, T.V., Chang, Jhy-Jiun, and Chen, J.T., 1979, Energy gap suppression and instability in superconducting tin films under strong quasiparticle injection, J. Low Temp. Phys., 37:77.ADSCrossRefGoogle Scholar
  38. Scalapino, D.J., 1969, The electron-phonon coupling and strong superconductors, in “Superconductivity”, Parks, R.D., ed., Mercel Dekker, New York.Google Scholar
  39. Schmid, A., and Schon, G., 1975, Linearized kinetic equations and relaxation processes of a superconductor near Tc, J. Low Temp. Phys., 20:207.ADSCrossRefGoogle Scholar
  40. Schrieffer, J.R. 1964, “Theory of Superconductivity”, Benjamin, New York.MATHGoogle Scholar
  41. Smith, A.D., Skocpol, W.J., and Tinkham, M., 1980, Quasiparticle energy distribution in optically illuminated Al-PbBi superconducting tunnel junctions, Phys. Rev. B, 21:3879.ADSCrossRefGoogle Scholar
  42. Tinkham, M., 1975, “Introduction to Superconductivity”, McGraw Hill Inc., New York.Google Scholar
  43. Tinkham, M., 1972, Tunneling generation, relaxation, and tunneling detection of hole-electron imbalance in superconductors, Phys. Rev. B, 6:1747.ADSCrossRefGoogle Scholar
  44. Willemsen, H.W., and Gray, K.E., 1978, Distribution function in nonequilibrium states of a superconductor, Phys. Rev. Lett., 41:812.ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Jhy-Jiun Chang
    • 1
  1. 1.Department of PhysicsWayne State UniversityDetroitUSA

Personalised recommendations