Advertisement

Heating and Dynamic Enhancement in Metallic Weak Links

  • M. Tinkham
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 65)

Abstract

In this chapter we treat two contrasting examples of the longitudinal mode of quasiparticle disequilibrium. First, we treat the rather classical problem of heating effects in three-dimensional constriction weak links, which increase the Johnson noise, while reducing the critical current and energy gap. Second, we treat the more subtle nonequilibrium effects generated by a time-varying energy gap. These provide a kind of negative feedback effect which slows down the gap response time from τGL to τΔ, which may be orders of magnitude longer, and also provides a type of dynamic enhancement of superconductivity in current-driven metallic weak links.

Keywords

Noise Temperature Johnson Noise Nonequilibrium Effect Dynamic Enhancement Short Bridge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aslamazov, L. G., and Larkin, A. I., 1969, Josephson effect in superconducting point contacts, ZhETF Pis. Red., 9: 150;ADSGoogle Scholar
  2. Aslamazov, L. G., and Larkin, A. I., 1969, Josephson effect in superconducting point contacts, Engl. trans. JETP Letters, 9: 87.ADSGoogle Scholar
  3. Aslamazov, L. G., and Larkin, A. I., 1976, Superconducting contacts with nonequilibrium electron distribution functions, Zh. Eksp. Teor. Fiz., 70: 1340;Google Scholar
  4. Aslamazov, L. G., and Larkin, A. I., 1976, Superconducting contacts with nonequilibrium electron distribution functions, Engl. transl. Sov. Phys. JETP, 43: 698.ADSGoogle Scholar
  5. Golub, A. A., 1976, Dynamic porperties of short superconducting filaments, Zh. Eksp. Teor. Fiz., 71: 341;Google Scholar
  6. Golub, A. A., 1976, Dynamic porperties of short superconducting filaments, Engl. transl. Sov. Phys. JETP, 44: 178.ADSGoogle Scholar
  7. Gubankov, V. N., Koshelets, V. P., and Ovsyannikov, G. A., 1977, Properties of Josephson thin film variable-thickness micro-bridges, Zh. Eksp. Teor. Fiz., 73: 1435;ADSGoogle Scholar
  8. Gubankov, V. N., Koshelets, V. P., and Ovsyannikov, G. A., 1977, Properties of Josephson thin film variable-thickness micro-bridges, Engl. transl. Sov. Phys. JETP, 46: 755.ADSGoogle Scholar
  9. Holm, R., 1967, “Electric Contacts”, Springer-Verlag, Berlin.Google Scholar
  10. Kohlrausch, F., 1900, Ueber den stationären Temperaturzustand eines elektrisch geheizten Leiters, Ann. Phys. (Leipzig), 1: 132.ADSMATHGoogle Scholar
  11. Klapwijk, T. M., and Mooij, J. E., 1975, Extension of the operating range of superconducting microbridges, IEEE Trans. Magn., MAG-11: 858.ADSCrossRefGoogle Scholar
  12. Likharev, K. K., and Yakobson, L. A., 1975, Steady-state properties of superconducting bridges, Zh. Tekh. Fiz., 45: 1503;Google Scholar
  13. Likharev, K. K., and Yakobson, L. A., 1975, Steady-state properties of superconducting bridges, Engl. transi. Sov. Phys. Tech. Phys., 20: 950.Google Scholar
  14. McDonald, D. G., Kose, V. E., and Evenson, K. M., 1969, Harmonic generation and submillimeter wave mixing with the Josephson effect, Appl. Phys. Lett., 15: 121.ADSCrossRefGoogle Scholar
  15. Octavio, M., Skocpol, W. J., and Tinkham, M., 1977, Improved performance of tin variable-thickness superconducting micro-bridges, IEEE Trans. Mag. MAG-13, 739.ADSCrossRefGoogle Scholar
  16. Octavio, M., Skocpol, W. J., and Tinkham, M., 1978, Nonequilibrium-enhanced supercurrents in short superconducting weak links, Phys. Rev. B, 17: 159.ADSCrossRefGoogle Scholar
  17. Pals, J. A., and Wolter, J., 1979, Measurement of the order-parameter relaxation in superconducting Al-strips, Phys. Lett., 70A: 150.ADSGoogle Scholar
  18. Schmid, A., 1968, The approach to equilibrium in a pure superconductor: the relaxation of the Cooper pair denisty, Phys. Kond. Mat., 8: 129.CrossRefGoogle Scholar
  19. Schmid, A. and Schön, G., 1975, Linearized kinetic equations and relaxation processes of a superconductor near Tc, J. Low Temp. Phys., 20: 207.ADSCrossRefGoogle Scholar
  20. Schmid, A., 1977, Stability of radiation-stimulated superconductivity, Phys. Rev. Lett., 38: 922.ADSCrossRefGoogle Scholar
  21. Schmid, A., Schön, G., and Tinkham, M., 1980, Dynamic properties of superconducting weak links, Phys, Rev. B, 21: 5076.ADSCrossRefGoogle Scholar
  22. Skocpol, W. J., Beasley, M. R., and Tinkham, M., 1974, Self-heating hotspots in superconducting thin-film microbridges, J. Appl. Phys., 45: 4054.ADSCrossRefGoogle Scholar
  23. Stephen, M. J., 1969a, Noise in the ac Josephson effect, Phys. Rev., 182: 539.ADSCrossRefGoogle Scholar
  24. Stephen, M. J., 1969b, Noise in a driven Josephson oscillator, Phys. Rev., 186: 393.ADSCrossRefGoogle Scholar
  25. Tinkham, M., Octavio, M., and Skocpol, W. J., 1977, Heating effects in high-frequen-cy metallic Josephson devices: Voltage limit, bolometric mixing, and noise, J. Appl. Phys., 48: 1311.ADSCrossRefGoogle Scholar
  26. van Dover, R. B., de Lozanne, A., Howard, R. E., McLean, W. L., and Beasley, M. R., preprint, Refractory superconductor S-N-S microbridges.Google Scholar
  27. Weitz, D. A., Skocpol, W. J., and Tinkham, M., 1978, Far-infrared frequency dependence of the ac Josephson effect in niobium point contacts, Phys. Rev., 18: 3282.ADSCrossRefGoogle Scholar
  28. Weitz, D. A., Skocpol, W. J., and Tinkham, M., 1978a, Characterization of niobium point contacts showing Josephson effects in the far-infrared, J. Appl. Phys., 49: 4873.ADSCrossRefGoogle Scholar
  29. Weitz, D. A., Skocpol, W. J., and Tinkham, M., 1978b, Properties of Josephson point-contact far-infrared detectors, Infrared Phys., 18: 647.ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • M. Tinkham
    • 1
  1. 1.Physics DepartmentHarvard UniversityCambridgeUSA

Personalised recommendations