Phonon Optics in Semiconductors

  • V. Narayanamurti
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 65)


The primary motivation for high frequency phonon propagation research is its application to a variety of transport problems at thermal frequencies. The strong dependence of anharmonic phonon decay processes, of defect- and electron-phonon scattering and acoustic dispersion on phonon frequency makes it particularly interesting to study high frequency phonon transport in solids. These effects become particularly dominant at frequencies of the order of 1012 Hz. During the last decade there has been a great deal of activity in this area. This has been due to the development of thin film generators and detectors such as superconducting tunneling junctions and bolometers. The use of such devices for phonon detection has been reviewed by von Gutfeld (1968) and Eisenmenger (1976, 1980a).


Heat Pulse Phonon Transport Phonon Emission Superconducting Tunnel Junction Phonon Generation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bagaev, V. S., Keldysh, L. V., Sibeldin, N. N. and Tsvetkov, V. A., 1976, Phonon wind propulsion of excitons and electron-hole droplets, Sov. Phys. JETP 43, 362.ADSGoogle Scholar
  2. Born, M. and Wolfe, E., 1964, In Principles of Optics (Pergamon, New York).Google Scholar
  3. Carruthers, P. A., 1961, Theory of thermal conductivity of solids at low temperatures, Rev. Mod. Phys, 33, 92.MathSciNetADSMATHCrossRefGoogle Scholar
  4. Challis, L. J., Ramdane, A., 1980, Phonon scattering by chromium ions in GaAs, Proceedings of Int’l. Conf. on Phonon Scattering in Condensed Matter (H. J. Maris, Ed., Plenum Press, New York).Google Scholar
  5. Chaudhuri, N., Wadhwa, R. S., Tiku, P., Sreedhar, A. K., 1973, Thermal conductivity of GaAs at low temperatures, Phys. Rev. 8, 4668.ADSCrossRefGoogle Scholar
  6. Dolling, G. and Waugh, J. T., 1964, Normal vibrations in gallium arsenide, In Proceedings of the Int’l. Conf. on Lattice Dynamics, Copenhagen, Denmark (Pergamon Press, Oxford).Google Scholar
  7. Dynes, R. C., Narayanamurti, V., Chin, M. A., 1971, Monochromatic phonon propagation in Ge:Sb using superconducting tunnel junctions, Phys. Rev. Lett. 4, 181.ADSCrossRefGoogle Scholar
  8. Dynes, R. C., Narayanamurti, V., 1972, Phonon fluorescence in superconductors and the propagation characteristics of high frequency phonons in Ge:Sb and Al2O3:V3+, Phys. Rev. B6, 5143.Google Scholar
  9. Eisenmenger, W., 1976, Tunneling junctions as phonon generators, in Physical Acoustics (W. P. Mason, Ed.), Vol. XII, p. 79 (Academic Press, New York).Google Scholar
  10. Eisenmenger, W., 1980a, Nonequilibrium phonons, Chapter III, this volume.Google Scholar
  11. Eisenmenger, W., 1980b, Phonon detection by the fountain pressure in superfluid 4helium films, Proceedings of Int’l. Conf. on Phonon Scattering in Condensed Matter (H. J. Maris, Ed., Plenum Press, New York).Google Scholar
  12. Forkel, W., Weite, M., Eisenmenger, W., 1973, Evidence for 870-GHz phonon emission from superconducting Al tunnel diodes through resonant scattering by oxygen in silicon, Phys, Rev. Lett. 31, 215.ADSCrossRefGoogle Scholar
  13. Geballe, T. H., Hull, G. W., 1958, Isotopic and other types of thermal resistance in germanium, Phys. Rev. 110, 773.ADSCrossRefGoogle Scholar
  14. Gossard, A. C., 1979, GaAs/AlAs layered films, Thin Solid Films 57, 3.ADSCrossRefGoogle Scholar
  15. Greenstein, M. and Wolfe, J. P., 1978, Anisotropy in the shape of the electron-hole-droplet cloud in germanium, Phys. Rev, Lett. 41, 715.ADSCrossRefGoogle Scholar
  16. Griffin, A. and Carruthers, P., 1963, Thermal conductivity of solids IV: resonance fluorescence scattering of phonons by donor electrons in germanium, Phys. Rev. 131, 1976.ADSMATHCrossRefGoogle Scholar
  17. Henry, C. H. and Lang, D. V., 1977, Nonradiative capture and recombination by multiphonon emission in GaAs and GaP, Phys. Rev. B15, 989.ADSGoogle Scholar
  18. Hensel, J. C., Dynes, R. C., 1979, Observation of singular behavior in the focussing of ballistic phonons in Ge, Phys. Rev. Lett. 43, 1033.ADSCrossRefGoogle Scholar
  19. Hensel, J. C., Dynes, R. C., 1977, Interaction of electron-hole drops with ballistic phonons in heat pulses: the phonon wind, Phys. Rev. Lett. 39, 969.ADSCrossRefGoogle Scholar
  20. Holland, M. G., 1964, Phonon scattering in semiconductors from thermal conductivity studies, Phys. Rev. 134, A471.ADSCrossRefGoogle Scholar
  21. Huet, D. and Maneval, J. P., 1974, Image of the fermi surface and screening effects in phonon attenuation, Phys. Rev. Lett. 33, 1154.ADSCrossRefGoogle Scholar
  22. Keldysh, L. V., 1976, Thermal conductivity and lattice vibrational modes, JETP Lett. 23, 86.ADSGoogle Scholar
  23. Klemens, P. G., 1958, Thermal conductivity and lattice vibrational modes, Solid State Physics 7, 1.CrossRefGoogle Scholar
  24. Lighthill, M. J., 1960, Studies on magneto-hydrodynamic waves and other anisotropic wave motions, Phil. Trans. Roy. Soc. A252, 397.MathSciNetADSGoogle Scholar
  25. Lang, D. V., Logan, R. A. and Jaros, M., 1979, Trapping characteristics and a donor-complex (DX) model for the persistent-photoconductivity trapping center in Te-doped AlxGa1-xAs, Phys. Rev. B19, 1015.ADSGoogle Scholar
  26. Lax, M., Nelson, D. F., 1975, Radiance theorem and optical invariants in anisotropic media, J. Opt. Soc. Am. 65, 668.ADSCrossRefGoogle Scholar
  27. Lax, M., Nelson, D. F., 1976, Imaging through a surface of an anisotropic medium with application to light scattering, J. Opt. Soc. Am. 66, 694.ADSCrossRefGoogle Scholar
  28. Lax, M., Narayanamurti, V., 1980, Phonon magnification and the gaussian curvature of the slowness surface in anisotropic media: detector shape effects with application to GaAs, (in press).Google Scholar
  29. Maris, H. J., 1971, Enhancement of heat pulses in crystals due to elastic anisotropy, J. Acoust. Soc. Am. 50, 812.ADSCrossRefGoogle Scholar
  30. Maneval, J. P., Zylberstejn, A., and Huet, D., 1971, Direct observation of electron-phonon interaction, Phys. Rev. Lett. 27, 1375.ADSCrossRefGoogle Scholar
  31. Musgrave, M. J. P., 1954, On the propagation of elastic waves in aelotropic media. I. General Principles, Proc. Roy. Soc. A226, 337.ADSGoogle Scholar
  32. Narayanamurti, V., Chin, M. A., and Logan, R. A., 1978a, Direct determination of symmetry of Cr ions in semi-insulating GaAs substrates through anisotropic ballistic phonon propagation and attenuation, Appl. Phys. Lett. 33, 481.ADSCrossRefGoogle Scholar
  33. Narayanamurti, V., Logan, R. A., and Chin, M. A., 1978b, Direct observation of phonons generated during nonradiative capture in GaAs p-n junctions, Phys. Rev. Lett. 40, 63.ADSCrossRefGoogle Scholar
  34. Narayanamurti, V., Logan, R. A., Chin, M. A., and Lax, M., 1978c, Anisotropic phonon generation in GaAs epilayers and pn junctions, Sol. St. El. 21, 1295.CrossRefGoogle Scholar
  35. Narayanamurti, V., Logan, R. A., and Chin, M. A., 1979a, Symmetry of donor-related centers responsible for persistent photoconductivity in AlxGa1-xAs, Phys. Rev. Lett. 43, 1536.ADSCrossRefGoogle Scholar
  36. Narayanamurti, V., Störmer, H. L., Chin, M. A., Gossard, A. C., and Wiegmann, W., 1979b, Selective transmission of high-frequency phonons by a superlattice: the “dielectric” phonon filter, Phys. Rev, Lett. 43, 2012.ADSCrossRefGoogle Scholar
  37. Northrup, G. A., Wolfe, J. P., 1979, Ballistic phonon imaging in solids — a new look at phonon focusing, Phys. Rev, Lett. 43, 1424.ADSCrossRefGoogle Scholar
  38. Orbach, R., 1966, Nonlinear phonon generation, Phys. Rev. Lett. 16, 15.ADSCrossRefGoogle Scholar
  39. Pomerantz, M. and von Gutfeld, R. J., 1968, Heat pulse studies of phonon scattering by impurities in Si and Ge, Proceedings of the Int’l. Conf. on the Physics of Semiconductors, Moscow, (Nanka Publishing House, Leningrad, U.S.S.R.) 2, 690.Google Scholar
  40. Taborek, P. and Goodstein, D., 1980, Diffuse reflection of phonons and the anomalous Kapitza resistance, Phys. Rev. (in press).Google Scholar
  41. Taylor, B., Maris, H. J., Elbaum, C., 1969, Phonon focusing in solids, Phys. Rev. Lett. 23, 416.ADSCrossRefGoogle Scholar
  42. Ulbrich, R. G., 1978, Optical studies of hot electrons, Proceedings of 14th Int’l. Conf. on Physics of Semiconductors, Edinburgh, Inst. Phys. Conf. Ser. No. 43, 11.Google Scholar
  43. Ulbrich, R. G., Narayanamurti, V. and Chin, M. A., 1980, Propagation of large wave vector phonons in semiconductors, Proceedings of 15th Int’l. Semiconductor Physics Conf., Kyoto, Japan and Phys. Rev. Lett. (submitted).Google Scholar
  44. von Gutfeld, R. J., 1968, Heat pulse transmission, in Physical Acoustics (W. P. Mason, Ed.), Vol. V, p. 233 (Academic Press, New York).Google Scholar
  45. Ziman, J. M., 1962, in Electrons and Phonons (Clarendon, Oxford, England).Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • V. Narayanamurti
    • 1
  1. 1.Bell LaboratoriesMurray HillUSA

Personalised recommendations