Advertisement

Abstract

Nonequilibrium or nonthermal phonon distributions in solids in general result from any kind of energy supply to the system. Experimentally thin superconducting films are especially well suited for studies of nonequilibrium excitation distributions. Quasiparticle and phonon distributions depend on the primary excitation processes, e.g. electron-injection by tunneling, phonon. microwave or optical radiation as well on the properties of the system as quasiparticle and phonon lifetimes, mean free path values and phonon escape conditions from the superconductor. Nonequilibrium in superconductors gives rise to an ample field of different phenomena. This chapter reviews work on nonequilibrium phonons resulting from tunnel injection, and phonon generation and detection in Section 2, experimental probing of nonequilibrium phonon emission in Section 3, applications to phonon absorption spectrocopy in Section 4, quantitative phonon intensity measurements in Section 5, applications to phonon emission spectroscopy in Section 6, and aspects of future work in Section 7.

Keywords

Tunneling Junction Phonon Spectrum Phonon Scattering Phonon Emission Superconducting Tunnel Junction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bardeen, J., Cooper, L.N., and Schrieffer, J.R., 1957, Theory of Superconductivity, Phys. Rev. 108, 1175.MathSciNetADSMATHCrossRefGoogle Scholar
  2. Bron, W.E., 1980, Spectroscopy of High-Frequency Phonons, Rep. Prog. Phys. 43, 301.ADSCrossRefGoogle Scholar
  3. Chang, J.J., and Scalapino, D.J., 1976, Tunneling as a Probe of Nonequilibrium Superconducting States, Phys. Rev. Lett. 37, 522.ADSCrossRefGoogle Scholar
  4. Chang, J.J., and Scalapino, D.J., 1978, Nonequilibrium Superconductivity, J. Low Temp. Phys. 31, 1.ADSCrossRefGoogle Scholar
  5. Chang, J.J., 1980, chapter 9 this volume, Instabilities of Nonequilibrium Superconducting States.Google Scholar
  6. Day, W., 1972, Phonon Transmission along Sapphire Plates, J. Phys. (France) 33, C4, 65.Google Scholar
  7. Dayem, A.H., 1972, Superconducting Tunnel Junctions as Phonon Sources and Detectors, J. Phys. (France) 33, C4, 15.Google Scholar
  8. Dayem, A.H., and Wiegand, J.J., 1972, Emitted Phonon Spectrum and Its Influence on the Detected Signal in Superconducting Sn Diodes, Phys. Rev. B5, 4390.ADSGoogle Scholar
  9. Dietsche, W., and Kinder, H., 1976, Frequency Analysis of Phonons Backscattered from Interfaces Between Solids and Helium, J. Low Temp. Phys. 23, 27.ADSCrossRefGoogle Scholar
  10. Dietsche, W., 1978, Superconducting Al-PbBi Tunnel Junction as a Phonon Spectrometer, Phys. Rev. Lett., 40, 786.ADSCrossRefGoogle Scholar
  11. Dietsche, W., and Kinder, H., 1979, Spectroscopy of Phonon Scattering in Glas, Phys. Rev. Lett. 43, 1413.ADSCrossRefGoogle Scholar
  12. Dietsche, W., Kinder, H., Mattes, J., and Wühl, H., 1980, Messung der Schallgeschwindigkeit in amorphen und rekristallisierten Supraleitern, Verhdlg. Deut. Phys. Ges. 3, 402.Google Scholar
  13. Dynes, R.C., Narayanamurti, V., and Chin, M., 1971, Monochromatic Phonon Propagation in Ge:SB Using Superconducting Tunnel Junctions, Phys. Rev. Lett. 26, 181.ADSCrossRefGoogle Scholar
  14. Dynes, R.C., and Narayanamurti, V., 1974, Evidence for the Upward or “Anomalous” Dispersion in the Excitation Spectrum of He II, Phys. Rev. Lett. 33, 1195.ADSCrossRefGoogle Scholar
  15. Eisenmenger, W., and Dayem, A.H., 1967, Quantum Generation and Detection of Incoherent Phonons in Superconductors, Phys. Rev. Lett. 18, 125.ADSCrossRefGoogle Scholar
  16. Eisenmenger, W., 1969, Phonon Generation and Detection by Single-Particle Tunneling in Superconductors, in: “Tunneling Phenomena in Solids”, E. Burstein and S. Lundquist, eds., p. 371, Plenum, New York.Google Scholar
  17. Eisenmenger, W., 1976a, Superconducting Tunneling Junctions as Phonon Generators and Detectors, in: “Physical Acoustics”, W.P. Mason and R.N. Thurston, eds., Vol. XII, p. 79–153, Academic Press. New York.Google Scholar
  18. Eisenmenger, W., 1976b, High Frequency Phonon Emission from Superconducting Al-Tunneling Junctions, in: “Phonon Scattering in Solids”, L.J. Challis, V.W. Rampton, A.F.G. Wyatt, eds., p. 400, Plenum Press, New York.CrossRefGoogle Scholar
  19. Eisenmenger, W., Laßmann, K., Trumpp, H.J., and Krauß, R., 1977, Intrinsic and Experimental Quasiparticle Recombination Times in Superconducting Films, Appl. Phys. 12, 163.ADSCrossRefGoogle Scholar
  20. Epperlein, P.W., Laßmann, K., and Eisenmenger, W., 1978, Quasiparticle Recombination Time in Superconducting Tin and Normal Electronic Density of States at the Fermi Surface from Tunnel Junction Experiments, Z. Phys. B 31, 377.ADSCrossRefGoogle Scholar
  21. Epperlein, P.W., and Eisenmenger, W., 1979, Measurements of effective Quasiparticle Recombination Times and of Densities of Electronic States at the Fermi Level in Superconducting Aland PB-Films, Z. Phys. B 32, 167.ADSCrossRefGoogle Scholar
  22. Forkel, W., Weite, M., and Eisenmenger, W., 1973, Evidence for 870-GHz Phonon Emission from Superconducting Al Tunnel Diodes through Resonant Scattering by Oxygen in Silicon, Phys. Rev. Lett. 31, 215.ADSCrossRefGoogle Scholar
  23. Forkel, W., 1974, Phonon Spectroscopy with Superconducting Aluminum Tunnel Junctions, in: “Microwave Acoustics”, E.R. Dobbs and J.K. Wigmore, eds., p. 186, Proc. 8th Internat. Congr. on Acoustics, Inst. Phys. London.Google Scholar
  24. Forkel, W., 1975, see: Eisenmenger, 1976b.Google Scholar
  25. Forkel, W., 1977, Anwendung von Nichtgleichgewichtsprozessen in Supraleiter-Tunneldioden zur Spektroskopie mit akustischen Phononen, Thesis, University of Stuttgart, unpublished.Google Scholar
  26. Giaever, I., and Megerle, K., 1961, Study of Superconductors by Electron Tunneling, Phys. Rev. 122, 1101.ADSCrossRefGoogle Scholar
  27. Giaever, I., 1969, Tunneling between Superconductors, in: “Tunneling Phenomena in Solids”, F. Burstein and S. Lundquist, eds., p. 255, Plenum Press, New York.Google Scholar
  28. Gray, K.E., 1980, chapter 5 this volume, Tunneling: A Probe of Non-equilibrium Superconductivity.Google Scholar
  29. Hu, P., Dynes, R.C., Narayanamurti, V., Smith, H., and Brinkman, W.F., 1979, Quasiparticle Propagation and Recombination in Bulk, Superconducting Pb, Phys. Rev. Lett. 39, 361.Google Scholar
  30. Huet, D., Maneval, J.P., and Zylbersztejn, A., 1972, Measurement of Acoustic-Wave Dispersion in Solids, Phys. Rev. Lett. 29, 1092.ADSCrossRefGoogle Scholar
  31. Huet, D., Maneval, J.P., 1974, Image of the Fermi Surface and Screening Effects in Phonon Attenuation, Phys. Rev. Lett. 33, 1154.ADSCrossRefGoogle Scholar
  32. Hasan, F., King, P.J., Murphy, D., Rampton, V.W., 1978, The Phonon Spectroscopy of Doped Magnesium Oxide Using Superconducting Tunnel Junctions, J. Phys. (France) 39, C6, 993.Google Scholar
  33. Hasan, F., King, P.J., Murphy, D., Rampton, V.W., 1979a, Multiple-Ion Phonon Absorption in Al2O3:Cr2+, J. Phys. (GB) 12, L431–3.ADSGoogle Scholar
  34. Hasan, F., King, P.J., Murphy, D., Rampton, V.W., 1979b, An Investigation of V3+ Ion Pairs in A12O3 by Phonon Spectroscopy, J. Phys. (GB) 12, L513–16.ADSGoogle Scholar
  35. Kaplan, S.B., Kirtley, J.R., and Langenberg, D.N., 1977, Experimental Determination of the Quasiparticle Energy Distribution in a Non-Equilibrium Superconductor, Phys. Rev. Lett. 39, 291.ADSCrossRefGoogle Scholar
  36. Kaplan, S.B., Chi, C.C., Langenberg, D.N., Chang, J.J., Jafaray, S., and Scalapino, D.J., 1977, Quasiparticle and Phonon Lifetimes in Superconductors, Phys. Rev. B14, 4854; Erratum ibid. 15, 3567.ADSGoogle Scholar
  37. Kinder, H., Laßmann, K., and Eisenmenger, W., 1970, Phonon Emission by Quasiparticle Decay in Superconducting Tunnel Junctions, Phys. Lett. 31A, 475.ADSGoogle Scholar
  38. Kinder, H., 1972a, Spectroscopy with Phonons on A12O3:V3+ Using the Phonon Bremsstrahlung of a Superconducting Tunnel Junction, Phys. Rev. Lett. 28, 1564.ADSCrossRefGoogle Scholar
  39. Kinder, H., 1972b, Use of the “Bremsspectrum” for Phonon Spectroscopy on A12O3:V3+ and for a Study of the Phonon Propagation in Granular Aluminum, J. Phys. (France) 33, C4, 21.Google Scholar
  40. Kinder, H., 1972c, Phonon Spectroscopy on the Resonant Scattering of V3+ and other Impurities in A12O3 by Tuning the “Brems-spectrum” of a Superconducting Tunnel Junction, Int. Conf. on Phonon Scattering in Solids, H.J. Albany, ed., p. 284, CEN Saclay.Google Scholar
  41. Kinder, H., 1973a, Spektroskopie mit Phononen bei Frequenzen über 100 GHz, Physikertagung, Deutsch-Österr. Phys. Ges., Plenarvortrag Hamburg, 1973, Physik Verlag, Weinheim.Google Scholar
  42. Kinder, H., 1973b, Spin-Phonon Coupling of A12O3:V3+ by Quantitative Spectroscopy with Phonons, Z. Phys. 262, 295.ADSCrossRefGoogle Scholar
  43. Kinder, H., 1975, Phonon Spectroscopy at Ultrahigh Frequencies, in: “Low Temperature Physics LT14”, M. Krusius and M. Vuorio, eds., p. 287, North Holland, Elsevier.Google Scholar
  44. Kinder, H., and Dietsche, W., 1975, Phonon Spectroscopy in A12O3 Doped with Transition Metal Impurities, in: Phonon Scattering in Solids, L.J. Challis, V.W. Rampton, and A.F.G. Wyatt, eds., p. 199, Plenum Press, New York.Google Scholar
  45. Kinder, H., Weber, J., and Dietsche, W., 1980, Kapitza Resistance Studies Using Phonon Pulse Reflection, in: “Phonon Scattering in Condensed Matter”, H.J. Maris, ed., p. 173, Plenum Press, New York.CrossRefGoogle Scholar
  46. Kirtley, J.R., Kent, D.S., Langenberg, D.N., Kaplan, S.B., Chang, J.J., and Yang, C.C., 1980, Quasiparticle Energy Distribution and Relaxation Times in a Tunnel-Injected Superconductor, Phys. Rev. B, in print.Google Scholar
  47. Koblinger, O., and Forkel, W., 1980, Phononspektroskopie mit Hetero-detektoren, Spring Meeting Deutsche Physik. Ges.Google Scholar
  48. Korcynskyj, Y., and Wyatt, A.F.G., 1978, Frequency Up-Conversion in Interacting Phonon Beams in Liquid 4He. J. Phys. (France) 39, C6, 230.Google Scholar
  49. Lang, P., Dietsche, W., and Kinder, H., 1980, Inelastische Phononenprozesse in Gläsern und amorphen Halbleitern, Verhdlg. Deut. Phys. Ges. 3, 234Google Scholar
  50. Langenberg, D.N., 1975, Nonequilibrium Phenomena in Superconductivity, in: “Low Temperature Physics LT14”, H. Krusius and H. Vuorio, eds., Vol. V 223, North Holland, Elsevier.Google Scholar
  51. Laßmann, K., and Zeile, H., 1980, Ultrasonic Spectroscopy of the Acceptor Ground State in Cubic Semiconductors, in: “Phonon Scattering in Condensed Matter”, H.J. Maris, ed., p. 369, Plenum Press, New York.CrossRefGoogle Scholar
  52. Long, A.R., 1972, Investigations of Electron — Phonon Interactions in Copper and Aluminum, J. Phys. (France) 33, C4, 73.Google Scholar
  53. Long, A.R., 1973, The Attenuation of High Frequency Phonons in metals, J. Phys. F. (GB) Met. Phys. 3, 2023.ADSCrossRefGoogle Scholar
  54. Long, A.R., and Adkins, C.J., 1973, Transfer Characteristics of Phonon Coupled Superconducting Tunnel Junctions, Phil. Mag. 27, 865.ADSCrossRefGoogle Scholar
  55. McMillan, W.L., and Rowell, J.M., 1969, Tunneling and Strong-Coupling Superconductivity, in: “Superconductivity”, R.D. Parks, ed., Marcel Decker, Vol. 1, p. 56l.Google Scholar
  56. Martinon, C., and Weis, O., 1979, α-Quartz as a Substrate in Thermal Phonon Radiation, Z. Phys. B32, 259.ADSGoogle Scholar
  57. Marx, D., Buck, J., Laßmann, K., and Eisenmenger, W., 1978, Reflection of High Frequency Phonons at Free Silicon Surfaces, J. Phys. (France) 39, C6, 1015.Google Scholar
  58. Mattes, J., Berberich, P., and Kinder, H., 1978, Resonant Scattering of Monochromatic Phonons by Magnons in MnF2 and in YIG, J. Phys. (France), 39, C6, 988.Google Scholar
  59. Miller, B.I., and Dayem, A.H., 1967, Relaxation and Recombination Times of Quasi-Partieles in Superconducting Al Thin Films, Phys. Rev. Lett. 18, 1000.ADSCrossRefGoogle Scholar
  60. Narayanamurti, V., and Dynes, R.C., 1971, Intense Tunable Phonon Fluorescence in Superconductors, Phys. Rev. Lett. 27, 410.ADSCrossRefGoogle Scholar
  61. Narayanamurti, V., and Dynes, R.C., 1976, Roton Propagation and Phonon-Roton Scattering in He II, Phys. Rev. B13, 2898.ADSGoogle Scholar
  62. Narayanamurti, V., Dynes, R.C., Hu, P., Smith, H., and Brinkman, W.F., 1978, Quasiparticle and Phonon Propagation in Bulk, Superconducting Lead, Phys. Rev. B18, 6041.ADSGoogle Scholar
  63. Narayanamurti, V., Stormer, H.L., Chin, M.A., Gossard, A.C., and Wiegmann, W., 1979, Selective Transmission of High-Frequency Phonons by a Superlattice: the ‘Dielectric’ Filter, Phys. Rev. Lett. 43, 2012.ADSCrossRefGoogle Scholar
  64. Narayanamurti, V., 1980, Phonon Optics, Carrier Relaxation and Recombination in Semiconductors: Case of GaAs Epitaxial Layers, in: “Phonon Scattering in Condensed Matter”, H.J. Maris, ed., p. 385, Plenum Press, New York.CrossRefGoogle Scholar
  65. Owen, C.S., and Scalapino, D.J., 1972, Superconducting State under the Influence of External Dynamic Pair Breaking, Phys. Rev. Lett. 28, 1559.ADSCrossRefGoogle Scholar
  66. Pannetier, B., Huet, D., Buechner, J., and Maneval, J.P., 1977, Ballistic Propagation of Near-Gap Phonons in Bulk Superconducting Tin, Phys. Rev. Lett. 39, 646.ADSCrossRefGoogle Scholar
  67. Parker, W.H., 1975, Modified Heating Theory of Nonequilibrium Superconductors, Phys. Rev. B12, 3667.ADSGoogle Scholar
  68. Proceedings of Phonon Scattering Conferences: 1972, J. Phys. (France), C33, Conf. Phys. of Very High Frequency Phonons, St. Maxime.Google Scholar
  69. Proceedings of Phonon Scattering Conferences: 1972, Int. Conf. Phonon Scattering Solids, Paris, H.J. Albany, ed., CEN Saclay.Google Scholar
  70. Proceedings of Phonon Scattering Conferences: 1976, Phonon Scattering in Solids, L.J. Challis, V.W. Ramp-ton, and A.F.G. Wyatt, eds., Plenum Press, New York.Google Scholar
  71. Proceedings of Phonon Scattering Conferences: 1980, Phonon Scattering in Condensed Matter, J.M. Maris, ed., Plenum Press, New York.Google Scholar
  72. Renk, K.F., 1972, Phononpulse, Festkörperprobleme, O. Madelung ed., Pergamon, Vieweg, 12, 107.Google Scholar
  73. Reupert, W., Laßmann, K., and de Groot, P., 1976, Anisotropy of Phonon Emission from Hot Electrons in Germanium, in: “Phonon Scattering in Solids”, L.J. Challis, V.W. Rampton, and A.F.G. Wyatt, eds., p. 315, Plenum Press, New York.CrossRefGoogle Scholar
  74. Rösch, T., and Weis, O., 1976, Geometric Propagation of Acoustic Phonons in Monocrystals within Anisotropic Continuum Acoustics, Z. Phys. B25, 115.ADSGoogle Scholar
  75. Rothwarf, A., and Taylor, B.N., 1967, Measurement of Recombination Lifetimes in Superconductors, Phys. Rev. Lett. 19, 27.ADSCrossRefGoogle Scholar
  76. Schad, H.P., and Laßmann, K., 1976, Ultrasonic Attenuation due to the Neutral Acceptor Indium in Silicon, Phys. Lett. 56A, 409.ADSGoogle Scholar
  77. Schenk, H., Forkel, W., and Eisenmenger, W., 1978, Phononenspektros-kopie mit Supraleiter-Tunneldioden, Verhdlg. Deut. Phys. Ges. 1, 328.Google Scholar
  78. Sigmund, E., and Laßmann, K., 1980, Phonon Scattering at Acceptors with Γ8 Ground States in Semiconductors, in: “Phonon Scattering in Condensed Matter”, H.J. Maris, ed., p. 417, Plenum Press, New York.CrossRefGoogle Scholar
  79. Smith, B.S., Wigmore, J.K., Meredith, D.J., 1978, Phonon Spectroscopy of Al2O3:Fe2+, Phys. Lett. 67A, 416.ADSGoogle Scholar
  80. Solymar, L., 1972, in: “Superconductive Tunneling and Applications”, pp. 45, 234, Chapman and Hall, London.Google Scholar
  81. Taylor, B., Maris, H.J., and Elbaum, C., 1969, Phonon Focusing in Solids, Phys. Rev. Lett. 23, 416.ADSCrossRefGoogle Scholar
  82. Taylor, B., Maris, H.J., and Elbaum, C., 1969, Focusing of Phonons in Crystalline Solids due to Elastic Anisotropy, Phys. Rev. B3, 1462.ADSGoogle Scholar
  83. Tewordt, L., 1962, Lifetimes of Quasi-Partieles and Phonons in a Superconductor at Zero Temperature, Phys. Rev. 127, 371ADSCrossRefGoogle Scholar
  84. Tinkham, M., 1972, Tunneling Generation, Relaxation, and Tunneling Detection of Hole-Electron Imbalance in Superconductors, Phys. Rev. B6, 1747.ADSGoogle Scholar
  85. Trumpp, H.J., and Eisenmenger, W., 1977, Sources of Loss Processes in Phonon Generation and Detection Experiments with Superconducting Tunneling Junctions, Z. Phys. B28, 159.ADSGoogle Scholar
  86. Weis, O., 1969, Thermal Phonon Radiation, Z. Angew. Phys. 26, 325.Google Scholar
  87. Weis, O., 1972, The Solid — Solid Interface in Thermal Phonon Radiation, J. Phys. (France) 33, C4, 48.Google Scholar
  88. Weite, M., Laßmann, K., and Eisenmenger, W., 1972, Emission of High Frequency Relaxation Phonons by Superconducting Aluminum Tunneling Junctions, J. Phys. (France) C33, 4.Google Scholar
  89. Weite, M., 1973, unpublished.Google Scholar
  90. Weite, M., 1974, Phonon Emission from Superconducting Tunnel Junctions at Finite Quasiparticle Densities, in: “Microwave Acoustics”, E.R. Dobbs and J.K. Wigmore, eds., Proc. Int. Congr. Acoustics, 8th, p. 183, Inst. Phys. London.Google Scholar
  91. Weite, M., 1976, Spektrale Eigenschaften supraleitender Aluminiumtunneldioden als Phononengeneratoren- und -detektoren, Thesis, University of Stuttgart, unpublished, see also: Weite M., and Eisenmenger, W., 1980.Google Scholar
  92. Weite, M., and Eisenmenger, W., 1980, Analysis of the Phonon Spectrum Emitted by Superconducting Al-Tunneling Junctions at High Quasiparticle Injection Rates, Z. Phys., in print.Google Scholar
  93. Willemsen, H.W., and Gray, K.E., 1978, Distribution Function in Nonequilibrium States of a Superconductor, Phys. Rev. Lett. 41, 812.ADSCrossRefGoogle Scholar
  94. Windheim, R., and Kinder, H., 1975a, Phonon Spectroscopy of OH- Tunneling Levels in NaCl, Phys. Lett. 51A, 475.ADSGoogle Scholar
  95. Windheim, E., and Kinder, H., 1975b, Phonon Spectroscopy of OH-and Li+ Tunneling States in Alkali Halides, in: “Phonon Scattering in Solids”, J. Challis, V. Rampton, and A.F.G. Wyatt, eds., p. 220, Plenum Press, New York.Google Scholar
  96. Wyatt, A.F.G., 1976, The Dynamics of Superconducting Phonon Devices, J. Phys. C (GB) 9, 2541.ADSCrossRefGoogle Scholar
  97. Wyatt, A.F.G., and Crisp, G.N., 1978, Frequency of Phonons Emitted into Liquid He by a Solid, J. Phys. (France) 39, C6, 244.Google Scholar
  98. Wyatt, A.F.G., 1980, Characteristics of Kapitza Conductance, in: “Phonon Scattering in Condensed Matter”, H.J. Maris, ed., p. 181, Plenum Press, New York.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • W. Eisenmenger
    • 1
  1. 1.Physikalisches InstitutUniversität StuttgartStuttgart 80Deutschland

Personalised recommendations