Motion of Magnetic Flux Structures

  • R. P. Huebener
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 65)


The Abrikosov lattice of flux lines in the mixed state of a type-II superconductor and the flux-containing domains in the intermediate state of a type-I superconductor represent spatially inhomogeneous states of the material. The more or less localized normal and superconducting regions may be looked at as “particles”, with a complementary character (such as electrons and holes). These “particles” are subjected to the laws of non-equilibrium thermodynamics, i.e., to the concepts of flows and generalized forces, valid in the linear range of the thermodynamics of irreversible processes (Nicolis and Prigogine, 1977). The forces we have to deal with here are those arising from an applied electric current (note that an electric field can usually not be sustained in a superconductor) or temperature gradient, resulting in the flow of the magnetic flux structure (our “particles”) and in the flow of heat.


Lorentz Force Flux Tube Vortex Line Flux Line Flux Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alden, T. H. and Livingston, J. D., 1966, Ferromagnetic particles in a type-II superconductor, J. Appl. Phys., 37:3551.ADSCrossRefGoogle Scholar
  2. Aslamazov, L. G. and Larkin, A. I., 1975, Josephson effect in wide superconducting bridges, Zh. Eksp. Teor. Fiz. 68, 766, Sov. Phys. JETP, 41:38l.Google Scholar
  3. Bardeen, J., 1978, Motion of flux lines in nearly pure superconductors, Phys. Rev. B, 17:1472.ADSCrossRefGoogle Scholar
  4. Bardeen, J. and Sherman, R. D., 1975, Flux flow in nearly pure low-κ superconductors, Phys. Rev. B, 12:2634.ADSCrossRefGoogle Scholar
  5. Bardeen, J. and Stephen, M. J., 1965, Theory of the motion of vortices in superconductors, Phys. Rev. A, 140:1197.ADSGoogle Scholar
  6. Brandt, E. H., 1980, Flux flow and pinning, to be published.Google Scholar
  7. Buck, W. and Selig, K. P. and Parisi, J., 1980, Model calculations of flux-tube nucleation in thin-film type-I superconductors, to be published.Google Scholar
  8. Campbell, A. M. and Evetts, J. E., 1972, Flux vortices and transport currents in type-II superconductors, Adv. in Phys., 21:199.ADSCrossRefGoogle Scholar
  9. Chandrasekhar, B. S., 1962, A note on the maximum critical field of high-field superconductors, Appl. Phys. Lett., 1:7.ADSCrossRefGoogle Scholar
  10. Chimenti, D. E. and Clem, J. R., 1978, Current-indueed flux motion in type-I superconducting films studied at 100-ns time resolution, Phil. Mag. B, 38:635.CrossRefGoogle Scholar
  11. Chimenti, D. E. and Huebener, R. P., 1977, Stroboscopic study of flux dynamics in superconductors during current-induced breakdown, Solid State Commun., 21:467.ADSCrossRefGoogle Scholar
  12. Clem, J. R., 1970, Theory of flux-flow noise voltage in superconductors, Phys. Rev. B, 1:2140.ADSCrossRefGoogle Scholar
  13. Clem, J. R., 1974, Theory of magnetically coupled type-II superconducting films, Phys. Rev. B, 9:898.ADSCrossRefGoogle Scholar
  14. Clem, J. R., 1975, Theory of the coupling force in magnetically coupled type-II superconducting films, Phys. Rev. B, 12:1742.ADSCrossRefGoogle Scholar
  15. Clem, J. R., Huebener, R. P. and Gallus, D. E., 1973, Gibbs free-energy barrier against irreversible magnetic flux entry into a superconductor, J. Low Temp. Phys., 12:449.ADSCrossRefGoogle Scholar
  16. Clogston, A. M., 1962, Upper limit for the critical field in hard superconductors, Phys. Rev. Lett., 9:266.ADSCrossRefGoogle Scholar
  17. Cyrot, M., 1973, Ginzburg-Landau theory for superconductors, Rep. Prog. Phys., 36:103.ADSCrossRefGoogle Scholar
  18. Ekin, J. W. and Clem, J. R., 1975, Magnetic coupling force of the superconducting dc transformer, Phys. Rev. B, 12:1753.ADSCrossRefGoogle Scholar
  19. Ekin, J. W., Serin, B. and Clem, J. R., 1974 Magnetic coupling in superposed type-II superconducting films, Phys. Rev. B, 9:912.ADSCrossRefGoogle Scholar
  20. Giaever, I., 1965, Magnetic coupling between two adjacent type-II superconductors, Phys. Rev. Lett., 15:825.ADSCrossRefGoogle Scholar
  21. Giaever, I., 1966, Flux pinning and flux-flow resistivity in magnetically coupled superconducting films, Phys. Rev. Lett., 16:460.ADSCrossRefGoogle Scholar
  22. Good, J. A. and Kramer, E. J., 1970, Deformation-induced anisotropy of the critical current in single crystal niobium, Phil. Mag., 22:329.ADSCrossRefGoogle Scholar
  23. Gor’kov, L. P. and Eliashberg, G. M., 1968, Generalization of the Ginzburg-Landau equations for non-stationary problems in the case of alloys with paramagnetic impurities, Zh. Eksp. Teor. Fiz., 54, 612, Sov. Phys. JETP, 27:328.ADSGoogle Scholar
  24. Haenssler, F. and Rinderer, L., 1967, Statique et dynamique de l’état intermédiaire des supraconducteurs du type I, Helv. Phys. Acta, 40:659.Google Scholar
  25. Hagmann, P., Meier-Hirmer, R. and Winter, H., 1977, Strong coupling effects in the temperature dependence of the flux-flow resistance near Hc2, Z. Physik B, 26:233.CrossRefGoogle Scholar
  26. Van Hove, L., 1954a, Correlations in space and time and born approximation scattering in systems of interacting particles, Phys. Rev., 95:249.ADSMATHCrossRefGoogle Scholar
  27. Van Hove, L., 1954b, Time-dependent correlations between spins and neutron scattering in ferromagnetic crystals, Phys. Rev., 95:1374.ADSMATHCrossRefGoogle Scholar
  28. Huebener, R. P., 1972, Thermoelectricity in metals and alloys in: “Solid State Physics,” Vol. 27, H. Ehrenreich, F. Seitz and D. Turnbull, eds., Academic Press, New York.Google Scholar
  29. Huebener, R. P., 1974, Dynamics of magnetic flux structures in superconductors, Phys. Reports, 13:143.ADSCrossRefGoogle Scholar
  30. Huebener, R. P., 1979, “Magnetic Flux Structures in Superconductors,” Springer Verlag, Berlin.Google Scholar
  31. Huebener, R. P. and Gallus, D. E., 1973, Current-induced intermediate state in thin-film type-I superconductors: electrical resistance and noise, Phys. Rev. B, 7:4089.ADSCrossRefGoogle Scholar
  32. Huebener, R. P. and Kampwirth, R. T., 1972, Magneto-optical studies of superconductors at high transport current densities in: “Proc. 1972 Appl. Supercond. Conf.,” H. M. Long and W. F. Gauser, eds., IEEE, New York, p. 422.Google Scholar
  33. Huebener, R. P. and Seher, A., 1969, Nernst effect and flux flow in superconductors. II. Lead films, Phys. Rev., 181:710.ADSCrossRefGoogle Scholar
  34. Hurm, V., Selig, K. P. and Huebener, R. P., 1979, Fluctuations in the flux nucleation process of the current-induced resistive state in type-I superconductors, Z Physik B, 32:175.ADSCrossRefGoogle Scholar
  35. Imai, S., 1975. Fluctuation conductivity and vortex flow resistivity of a dirty strong-coupling superconductor, Prog. Theor. Phys. (Japan) 54:624.ADSCrossRefGoogle Scholar
  36. Josephson, B. D., 1962, Possible new effects in superconductive tunnelling, Phys. Lett., 1:251.ADSMATHCrossRefGoogle Scholar
  37. Kim, Y. B. and Stephen, M. J., 1969, Flux flow and irreversible effects in: “Superconductivity,” R. D. Parks, ed., Marcel Dekker, New York, p. 1107.Google Scholar
  38. Kirchner, H., 1971, Ein hochauflösendes magnetooptisches verfahren zur Untersuchung der kinematik magnetischer strukturen in Supraleitern, Phys. Stat. Sol. (a), 4:531.ADSCrossRefGoogle Scholar
  39. König, B. and Kirchner, H., 1975, Magnetooptische beobachtungen und elektrische messungen an stromdurchflossenen, supraleitenden bleischichten im zwischenzustand, Phys. Stat. Sol. (a), 28:467.ADSCrossRefGoogle Scholar
  40. Kopnin, N. B. and Kravtsov, V. E., 1976, Conductivity and Hall effect of pure type-II superconductors at low temperatures, Pis’ma Zh. Eksp. Teor. Fiz., 23, 631, JETP Letters, 23:578.ADSGoogle Scholar
  41. Larkin, A. I. and Ovchinnikov, Yu. N., 1976, Viscosity of vortices in pure superconductors, Pis’ma Zh. Eksp. Teor. Fiz., 23, 210, JETP Letters, 23:187.ADSGoogle Scholar
  42. Larkin, A. I. and Ovchinnikov, Yu. N., 1977, Nonlinear effects during the motion of vortices in superconductors, Zh. Eksp. Teor. Fiz., 73, 299, Sov. Phys. JETP, 46:155.ADSGoogle Scholar
  43. Larkin, A. I. and Ovchinnikov, Yu. N., 1979, Pinning in type II superconductors, J. Low Temp. Phys., 34:409.ADSCrossRefGoogle Scholar
  44. Likharev, K. K., 1972. Vortex motion and the Josephson effect in superconducting thin bridges, Zh. Eksp. Teor. Fiz., 61, 1700, Sov. Phys. JETP, 34:906.ADSGoogle Scholar
  45. Lowell, J., 1970, The frictional force on a moving fluxon, J. Physics C: Solid State Phys., 3:712.ADSCrossRefGoogle Scholar
  46. Maki, K., 1964, The magnetic properties of superconducting alloys. II, Physics, 1:127Google Scholar
  47. Morrison, D. D. and Rose, R. M., 1970, Controlled pinning in superconducting foils by surface microgrooves, Phys. Rev. Lett., 25:356.ADSCrossRefGoogle Scholar
  48. Nicolis, G. and Prigogine, I., 1977, “Self-Organization in Non-equilibrium Systems,” John Wiley, New York.Google Scholar
  49. Schmid, A., 1966, A time dependent Ginzburg-Landau equation and its application to the problem of resistivity in the mixed state, Phys. Kond. Materie, 5:302.ADSCrossRefGoogle Scholar
  50. Selig, K. P., 1980, Flux-tube motion in the current-induced resistive state of superconductors, Thesis, University of Tubingen (unpublished).Google Scholar
  51. Selig, K. P., Chimenti, D. E. and Huebener, R. P., 1978, Passive measurement of flux nucleation in the current-induced resistive state of type I superconductors, Z. Physik B, 29:33.ADSCrossRefGoogle Scholar
  52. Selig, K. P. and Huebener, R. P., 1980, Flux nucleation in the current-induced resistive state of a constricted type-I superconductor, to be published.Google Scholar
  53. Shoenberg, D., 1952, “Superconductivity,” Cambridge University Press, Cambridge.MATHGoogle Scholar
  54. Swartz, P. S. and Hart, H. R., 1965, Surface effects in the mixed superconducting state, Phys. Rev., 137A:8l8.Google Scholar
  55. Ullmaier, H., 1975, Irreversible properties of type-II superconductors, “Springer Tracts in Modern Physics,” Vol. 76, Springer Verlag, Berlin.CrossRefGoogle Scholar
  56. Usui, N., Ogasawara, T., Yusukochi, K. and Tomoda, S., 1969, Magnetization, flux flow resistance and Hall effect in superconducting vanadium, J. Phys. Soc., Japan, 27:574.ADSCrossRefGoogle Scholar
  57. Van Vijfeijken, A. G., 1968, On the theory of vortices in type-II superconductors, Philips Res. Rep. Suppl., 8:1.Google Scholar
  58. Yamafuji, K. and Irie, F., 1967, On the concept of pinning force in type II superconductors, Phys. Lett., 25A:387.ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • R. P. Huebener
    • 1
  1. 1.Physikalisches Institut IIUniversity of TübingenTübingenGermany

Personalised recommendations