Kapitza Conductance of Solid-Liquid He Interfaces

  • A. F. G. Wyatt
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 65)


The Kapitza conductance problem is concerned with phonon transmission between solids and light atoms in both directions through the interface. The heat transfer across solid-solid interfaces is covered by Anderson in chapter 1. The magnitudes of the conduction between different solids can be well understood in terms of classical elasticity however when 3He, 4He, H2 or D2 is one of the materials the heat transfer is much greater than that predicted by classical theory. We shall tend to concentrate on 4He as there is more information available for this material than the others. We shall see that classical transmission does occur with liquid 4He but that there is another channel in parallel with it which carries most of the heat for temperatures ≳0.05K. Although many of the characteristics of this non-classical channel have been measured the microscopic process still remains a mystery. The subject has been reviewed by Pollack (1969) Snyder (1970) Challis (1974, 1975) Anderson (1976) Kinder et al. (1979) and Wyatt (1979).


Transmission Coefficient Tunnel Junction Acoustic Model Light Atom Phonon Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, A.C., 1976, The Thermal Boundary Resistance, in “Phonon Scattering in Solids”, Challis, L.J., Rampton, V.W. and Wyatt, A.F.G., eds., Plenum, New York.Google Scholar
  2. Anderson, C.H. and Sabisky, E.S., 1971, Spin Phonon Spectrometer, in “Physical Acoustics”, Mason, W.P. and Thurston, R.N., eds., Academic Press, New York, 8:1.Google Scholar
  3. Bishop, J.C. and Van der Sluijs, J.C.A., 1980, The Kapitza Conductance and its Enhanced Power Anomaly for Clean Silver to Helium Four Interfaces at Temperatures between 1 and 2K, J. Low Temp. Phys., to be published.Google Scholar
  4. Blackford, B.L., 1972, Phonon Interference in Thin Helium Films Using Superconducting Tunnel Junctions, Phys. Rev. Lett., 28:414.ADSCrossRefGoogle Scholar
  5. Buck, J., Lassmann, K. and Eisenmenger, W., 1974, Transmission of Heater Generated High Frequency Phonons through a Sapphire-Hell Boundary, Phys. Lett., 50A:279.ADSGoogle Scholar
  6. Buechner, J. and Maris, H.J., 1975, Reflection of Phonons at Interfaces between Silicon and Solid Hydrogen and Deuterium, Phys. Rev. Lett., 34:316.ADSCrossRefGoogle Scholar
  7. Challis, L.J., 1974, Kapitza resistance and acoustic transmission across boundaries at high frequencies, J. Phys. C. Solid State Phys., 7:481.ADSCrossRefGoogle Scholar
  8. Challis, L.J., 1975, Kapitza Conductance, in “The Helium Liquids”, Armitage, J.M.G. and Farquer, I.E., eds., Academic Press, New York, Ch. 10.Google Scholar
  9. Challis, L.J. and Cheeke, J.D.N., 1968, Some comments on the theory of the Kapitza conductance between metals and liquid helium, Proc. Roy. Soc, 304A:479, London.ADSGoogle Scholar
  10. Crisp, G.N., 1980, Phonon transmission through solid-liquid Helium interfaces, Ph.D. Thesis, University of Nottingham.Google Scholar
  11. Dessler, A.J. and Fairbanks, W.M., 1956, Amplitude Dependence of the Velocity of Second Sound, Phys. Rev. 104:6.ADSCrossRefGoogle Scholar
  12. Dietsche, W. and Kinder, H., 1976, Frequency Analysis of Phonons Backscattered from Interfaces Between Solids and Helium, J. Low. Temp. Phys. 23:27.ADSCrossRefGoogle Scholar
  13. Folinsbee, J.T. and Anderson, A.C., 1973, Anomalous Kapitza Resistance to Solid Helium, Phys. Rev. Lett., 31:1580.ADSCrossRefGoogle Scholar
  14. Folinsbee, J.T. and Harrison, J.P., 1978, Phonon Reflection at a Silicon/3He Interface, J. Low.Temp. Phys., 32:469.ADSCrossRefGoogle Scholar
  15. Guo, C.J. and Maris, H.J., 1972, Reflection of Phonons at an Interface between a Solid and Helium, Phys. Rev. Lett., 29:855.ADSCrossRefGoogle Scholar
  16. Guo, C.J. and Maris, H.J., 1974, Experimental study of the reflection of phonons at an interface between dielectric crystals and liquid helium, gaseous helium, and solid neon, Phys. Rev. A10:960.ADSGoogle Scholar
  17. Guyer, R.A., 1977, Vacancy Waves in Two Dimensional Systems, Proc. ULT Hakone Symposium p178.Google Scholar
  18. Haug, H. and Weiss, K., 1972, A Modified Theory of the Kapitza Resistance, Phys. Lett., A40:19.ADSGoogle Scholar
  19. Horstman, R.E. and Wolter, J., 1977, Reflection of High-Frequency Phonons at a Solid-Helium Interface: The Role of Phonon Focusing, Phys. Lett. 62A:279.ADSGoogle Scholar
  20. Ishiguro, T. and Fjieldly, T.A., 1973, Emission of Thermal Energy into Liquid Helium, Phys. Lett. 45A:127.ADSGoogle Scholar
  21. Johnson, R.C., 1964, Kapitza Resistance of a Crystal Cleaved While Immersed in Liquid Helium, Bull. Am. Phys. Soc, 9:713.Google Scholar
  22. Keen, B.E., Matthews, P.W. and Wilks, J., 1965, The Acoustic impedance of liquid helium-3, Proc. Roy. Soc, A284:125.ADSGoogle Scholar
  23. Khalatnikov, I.M., 1965, Heat Exchange between a Solid and Helium II, in “An Introduction to the theory of superfluidity”, W.A. Benjamin inc., New York, Amsterdam.Google Scholar
  24. Kinder, H., Weber, J. and Dietsche, W., 1979, Kapitza Resistance Studies Using Phonon Pulse Reflection, in “Phonon Scattering in Condensed Matter”, Maris, H.J., ed., Plenum, New York.Google Scholar
  25. Kinder, H. and Dietsche, W., 1974, Strong Phonon Conversion at the Helium-Solid Interface, Phys. Rev. Lett., 33:578.ADSCrossRefGoogle Scholar
  26. Little, W.A., 1959, The Transport of Heat Between Dissimilar Solids at Low Temperatures, Can. J. Phys., 37:334.ADSCrossRefGoogle Scholar
  27. Long, A.R., Sherlock, R.A. and Wyatt, A.F.G., 1974, Phonon reflection at a cleaved sodium fluoride-helium film interface, J. Low. Temp. Phys., 15:523.ADSCrossRefGoogle Scholar
  28. Maris, H.J., 1979, Phonon Transmission across interfaces and the Kapitza resistance, Phys. Rev. B19:1443.ADSGoogle Scholar
  29. Nakayama, T., 1977, Tunneling states of helium atoms and the Kapitza thermal resistance, J. Phys. C 10:3273.ADSCrossRefGoogle Scholar
  30. Namaizawa, H., 1976, A Model of Inelastic Heat Transfer Mechanism for the Excess Kapitza Conductance, in “Phonon Scattering in Solids”, Challis, L.J., Rampton, V.W. and Wyatt, A.F.G., eds, Plenum, New York.Google Scholar
  31. Page, G.J., 1977, Phonon propagation across liquid 4He-solid interfaces, Ph.D. Thesis, University of Nottingham.Google Scholar
  32. Page, G.J., Sherlock, R.A., Wyatt, A.F.G. and Ziebeck, K.R.A., 1976, The Angular Distribution of Phonons Radiated from the Cleaved <100> Faces of NaF, KCl, and MgO into Liquid 4He, in “Phonon Scattering in Solids”, Challis, L.J., Rampton, V.W. and Wyatt, A.F.G., eds., Plenum, New York.Google Scholar
  33. Peterson, R.E. and Anderson, A.C., 1972, The Kapitza Thermal Boundary Resistance, Phys. Letters 40A:317.ADSGoogle Scholar
  34. Pollack, G.L., 1969, Kapitza Resistance, Rev. Mod. Phys., 41:48.ADSCrossRefGoogle Scholar
  35. Polanco, S.E. and Bretz, M., 1978, Thermal Resistivity of Layered 4He Films on 2YX Graphite Below 2K, Phys. Rev., 17:151.ADSCrossRefGoogle Scholar
  36. Reynolds, C.L. and Anderson, A.C., 1977, Thermal boundary resistance to solid, helium, hydrogen, deuterium, and neon II, Phys. Rev. B15:5466.ADSGoogle Scholar
  37. Sabisky, E.S. and Anderson, C.H., 1975, Reflection Coefficient of Phonons Between 15 and 315 GHz at a Crystal-Liquid-Helium Interface, Solid State Comm. 17:1095.ADSCrossRefGoogle Scholar
  38. Salemink, H.W.M., Van Kempen, H., and Wyder, P., 1978, Ballistic-Phonon-Pulse Transmission through a Solid-Liquid He II Interface at T = 0.25K, Phys. Rev. Lett., 41:1733.ADSCrossRefGoogle Scholar
  39. Saslow, W.M. and Lumpkin, M.E., 1979, Interfacial Three-Phonon Processes and Anomalous Interfacial Energy Transport, Solid State Comm., 29:395.ADSCrossRefGoogle Scholar
  40. Sheard, F.W. and Fletcher, J.R., 1979, Kapitza Conduction Via Non Localized Interface Modes, in “Phonon Scattering in Condensed Matter”, Maris, H.J., ed., Plenum, New York.Google Scholar
  41. Snyder, N.S., 1970, Heat transport through helium II: Kapitza conductance, Cryogenics, 10:89CrossRefGoogle Scholar
  42. Snyder, N.S., 1976, The Kapitza Conductance of the (100) Surface of Copper, J. Low Temp. Phys., 22:257.ADSzbMATHCrossRefGoogle Scholar
  43. Svensson, E.C., Woods, A.D.B. and Martel, P., 1972, Phonon Dispersion in Liquid Helium under Pressure, Phys. Rev. Lett. 29:1148.ADSCrossRefGoogle Scholar
  44. Swanenburg, T.J.B. and Wolter, J., 1973, Transmission of High-Frequency Phonons through a Solid-Liquid Helium Interface, Phys. Rev. Lett., 31:693.ADSCrossRefGoogle Scholar
  45. Taborek, P. and Goodstein, D., 1979, Phonon reflection at a sapphire-vacuum interface, J. Phys. C., Solid State Phys., 12:4737.ADSCrossRefGoogle Scholar
  46. Taborek, P. and Goodstein, D., 1980, Phonon Focusing Catastrophes, Preprint.Google Scholar
  47. Van der Sluijs, J.C.A. and Pattullo, A.W., 1979, Agreement between Experiment and Theory in the Kapitza Conductance between clean copper samples and 4He from 0.3 to 1.3K, in “Phonon Scattering in Condensed Matter”, Maris, H.J., ed., Plenum, New York.Google Scholar
  48. Weber, J., Dietsche, W. and Kinder, H., 1977, Time Delay of Phonon Pulses in Thin Helium Films, Phys. Lett., 64A:202.ADSGoogle Scholar
  49. Weber, J., Sandemann, W., Dietsche, W. and Kinder, H., 1978, Absence of Anomalous Kapitza Conductance on Freshly Cleaved Surfaces, Phys. Rev. Lett., 40:1469.ADSCrossRefGoogle Scholar
  50. Wolter, J. and Horstman, R.E., 1977, Quantitative Measurement of the Phonon Energy Transmission Coefficient for a Silicon-He II Boundary, Phys. Lett., 61A:238.ADSGoogle Scholar
  51. Wyatt, A.F.G., 1979, Characteristics of Kapitza Conductance, in “Phonon Scattering in Condensed Matter”, Maris, H.J., ed., Plenum, New York.Google Scholar
  52. Wyatt, A.F.G. and Crisp, G.N., 1978, Frequency of phonons emitted into liquid He by a solid, J. de Physique 39:C6–244.Google Scholar
  53. Wyatt, A.F.G. and Page, G.J., 1978, The Transmission of phonons from liquid He to crystalline NaF, J. Phys. C: Solid State Phys., 11:4927.ADSCrossRefGoogle Scholar
  54. Wyatt, A.F.G., Sherlock, R.A. and Allum, D.R., 1980, to be published.Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • A. F. G. Wyatt
    • 1
  1. 1.Department of PhysicsUniversity of ExeterExeterUK

Personalised recommendations