Advertisement

Stability of Nonequilibrium Superconducting States I: General Principles

  • A.-M. S. Tremblay
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 65)

Abstract

Some of the concepts necessary to study the stability of non-equilibrium superconductors are introduced including probabilistic methods which account for fluctuations (thermal noise).

Keywords

Nonequilibrium State Dissipative Structure Free Energy Density Deterministic Equation Diffusive Instability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold, L., Horsthemke, W., and Lefever, R., 1978, White and coloured external noise and transition phenomena in nonlinear system, Z. Physik B, 29:367.ADSCrossRefGoogle Scholar
  2. Aronov, A.G., and Gurevich, V.L., 1974, Response of a pure superconductor to a slowly varying perturbation, Fiz. Tverd. Tela (Leningrad), 16:2656; Engl. transi.Google Scholar
  3. Aronov, A.G., and Gurevich, V.L., 1975, Sov. Phys. Solid State, 16:1722.Google Scholar
  4. Aronov, A.G., and Spivak, B.Z., 1975, Stability of states of a superconductor with a “negative superfluid density”, Fiz. Tverd. Tela (Leningrad), 17:2806Google Scholar
  5. Aronov, A.G., and Spivak, B.Z., 1975, Stability of states of a superconductor with a “negative superfluid density”, Engl. transl. Sov. Phys. Solid State, 17:1874.Google Scholar
  6. Aronov, A.G., and Spivak, B.Z., 1978, Nonequilibrium distributions in superconductors (Review), Fiz. Nizk. Temp., 4:1365Google Scholar
  7. Aronov, A.G., and Spivak, B.Z., 1978, Nonequilibrium distributions in superconductors (Review), Engl. transi. Sov. J. Low Temp. Phys., 4:641.Google Scholar
  8. Baru, V.G., and Sukhanov, A.A., 1975, New types of instabilities in nonequilibrium excitation of a superconductor, ZhETF Pis. Red., 21:209ADSGoogle Scholar
  9. Baru, V.G., and Sukhanov, A.A., 1975, New types of instabilities in nonequilibrium excitation of a superconductor, Engl. transi. JETP Lett., 21:93.ADSGoogle Scholar
  10. Chang, J.J., and Scalapino, D.J., 1974, New instability in superconductors under external dynamic pair breaking, Phys. Rev. B, 10:4047.ADSCrossRefGoogle Scholar
  11. Chandrasekhar, S., 1968, “Hydrodynamic and hydromagnetic stability,” Clarendon, Oxford.Google Scholar
  12. Eckern, U., Schmid, A., Schmutz, M., and Schön, G., 1979, Stability of superconducting states out of thermal equilibrium, J.Low Temp. Phys., 36:643.ADSCrossRefGoogle Scholar
  13. Elesin, V.F., 1977, Nonstationary “intermediate” state of nonequilibrium superconductors, Zh. Eksp. Teor. Fiz., 73:355ADSGoogle Scholar
  14. Elesin, V.F., 1977, Nonstationary “intermediate” state of nonequilibrium superconductors, Engl. transi. Sov. Phys. JETP, 46:185.ADSGoogle Scholar
  15. Golovashkin, A.I., Mitsen, K.V., and Motulevich, G.P., 1975, Experimental investigation of the nonequilibrium state of superconductors excited by lasers, Zh. Eksp. Teor. Fiz., 68:1408ADSGoogle Scholar
  16. Golovashkin, A.I., Mitsen, K.V., and Motulevich, G.P., Engl. transl. 1976, Sov. Phys. JETP, 41:701.ADSGoogle Scholar
  17. Haken, H., 1975, Cooperative phenomena in systems far from thermal equilibrium and in nonphysical systems, Rev. Mod. Phys., 47:67. Good introduction.MathSciNetADSCrossRefGoogle Scholar
  18. Hida, K., 1978, Phase transitions in nonequilibrium superconductors induced by quasiparticle injection, J. Low. Temp. Phys., 32:881.ADSCrossRefGoogle Scholar
  19. Hongier, M.-O., and Ryter, D.M., 1978, Hard mode stationary states generated by fluctuations, Z. Physik B, 31:333.ADSCrossRefGoogle Scholar
  20. Kramers, H.A., 1940, Brownian motion in a field of force and the diffusion model of chemical reactions, Physica, VII:284.MathSciNetADSCrossRefGoogle Scholar
  21. Landauer, R., and Swanson, J.A., 1961, Frequency factors in the thermally activated process, Phys. Rev., 121:1668. “Easy” reference on nucleation rates in the case of many variables.ADSCrossRefGoogle Scholar
  22. Landauer, R., 1978, Stability in the dissipative steady state, Physics Today, Nov. 78:23. Good introduction to some of the concepts described in this Chapter.CrossRefGoogle Scholar
  23. Landauer, R., 1977, The ballast resistor, Phys. Rev. A, 15:2117. Introduces many of the concepts of this Chapter in the context of a simple model.ADSCrossRefGoogle Scholar
  24. Langer, J.S., 1968, Theory of nucleation rates, Phys. Rev. Lett., 21:973.ADSCrossRefGoogle Scholar
  25. Minorski, N., 1947, “Nonlinear Mechanics,” J.W. Edwards, Ann Arbor. Good introduction to the mathematics of stability analysis.Google Scholar
  26. Sai-Halasz, G.A., Chi, C.C., Denenstein, A., and Langenberg, D.N., 1974, Effect of dynamic external pair-breaking in superconducting films, Phys. Rev. Lett., 33:215.ADSCrossRefGoogle Scholar
  27. Scalapino, D.J., and Huberman, B.A., 1977, Onset of an inhomogeneous state in a nonequilibrium superconducting film, Phys. Rev. Lett., 39:1365.ADSCrossRefGoogle Scholar
  28. Schmid, A., 1977, Stability of radiation-stimulated superconductivity, Phys. Rev. Lett., 38:922.ADSCrossRefGoogle Scholar
  29. Smith, L.N., 1977, Diffusive instability in optically excited superconducting films, J. Low Temp. Phys., 28:519.ADSCrossRefGoogle Scholar
  30. Tremblay, A.-M., Patton, B., Martin, P.C., and Maldague, P.F., 1979, Microscopic calculation of the nonlinear current fluctuations of a metallic resistor: the problem of heating in perturbation theory, Phys. Rev. A, 19:1721.ADSCrossRefGoogle Scholar
  31. Tremblay, A.-M.S., Siggia, E.D., and Arai, M.R., 1980, Fluctuations about hydrodynamic nonequilibrium steady states, Phys. Lett., 76A:57. The last two papers illustrate some general points made in the text about Langevin forces.ADSGoogle Scholar
  32. Tremblay, A.-M., Patton, B.R., and Martin, P.C., 1980, Kinetic equations in superconductors and the nature and decay rate of a new mode, Ann. Phys. (New York), 124:401.ADSCrossRefGoogle Scholar
  33. van Kampen, N.G., 1965, Fluctuations in nonlinear systems, in: “Fluctuation phenomena in solids,” R.E. Burgess, ed., Academic Press, New York.Google Scholar
  34. Volkov, A.F., and Kogan, Sh.M., 1968, Physical phenomena in semiconductors with negative differential conductivity, Usp. Fiz. Nauk., 96:633Google Scholar
  35. Volkov, A.F., and Kogan, Sh.M., Engl. transl. 1969, Soviet Physics Uspekhi. 11:881.ADSCrossRefGoogle Scholar
  36. Wang, M.C., and Uhlenbeck, G.E., 1945, On the theory of Brownian motion II, Rev. Mod. Phys., 17:323. Reprinted 1954 in: “Selected papers on noise and stochastic processes,” N. Wax, ed., Dover, New York.MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • A.-M. S. Tremblay
    • 1
  1. 1.Département de physiqueUniversité de SherbrookeSherbrookeCanada

Personalised recommendations