The Kapitza Thermal Boundary Resistance Between Two Solids

  • A. C. Anderson
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 65)


While investigating the transport of heat in superfluid He, Kapitza (1941) observed a large temperature difference AT between his copper heater and the liquid helium. He deduced that the entire AT occurred very close to the copper-helium interface. It is permissible therefore to define a thermal boundary resistance RK ≡ AT/Q, where Q is the heat flux per unit area of interface. Rk, now called the Kapitza resistance, has been shown to have a temperature dependence of T-3.


Critical Angle Phonon Scattering Phonon Dispersion Solid Helium Thermal Boundary Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, A. C., and Rauch, R. B., 1970, Low-Temperature Thermal Conductivity of a Suspension of Copper Particles, J. Appl. Phys., 41:3648.ADSCrossRefGoogle Scholar
  2. Anderson, A. C., and Peterson, R. E., 1970, Selection of a Thermal Bonding Agent for Temperature Below 1 K, Cryogenics, 10:430.CrossRefGoogle Scholar
  3. Anderson, A. C., Salinger, G. L., and Wheatley, J. C., 1961, Transfer of Heat Below 0.15°K, Rev. Sci. Instrum., 32:1110.ADSCrossRefGoogle Scholar
  4. Anderson, A. C., and Peterson, R. E., 1972, The Thermal Resistance Between Electrons and Phonons in Copper, Phys. Lett., 38A:519.ADSGoogle Scholar
  5. Barnes, L. J., and Dillinger, J. R., 1966, Thermal Resistivity at Pb-Cu and Sn-Cu Interfaces between 1.3 and 2.1°K, Phys. Rev., 141:615.ADSCrossRefGoogle Scholar
  6. Becker, F. L., and Richardson, R. L., 1970, Ultrasonic Critical Angle Reflectivity, in “Research Techniques in Nondestructive Testing”, R. S. Sharp, ed., Academic, New York, Vol. I, p. 91.Google Scholar
  7. Bron, W. E., Patel, J. L., and Schaich, W. L., 1979, Transport of Phonons into Diffusive Media, Phys. Rev. B, 20:5394.ADSCrossRefGoogle Scholar
  8. Cheeke, J.D.N. and Martinon, C., 1972, Influence of Surface Defects on High Frequency Phonon Generation, Solid State Commun., 11:1771.ADSCrossRefGoogle Scholar
  9. Cheeke, J.D.N., Ettinger, H., and Hebral, B., 1976, Analysis of Heat Transfer Between Solids at Low Temperatures, Can. J. Phys., 54:1749.ADSCrossRefGoogle Scholar
  10. Clarke, J., and Hsiang, T., 1976, Low-Frequency Noise in Tin and Lead Films at the Superconducting Transition, Phys. Rev. B, 13:4790.ADSCrossRefGoogle Scholar
  11. de Araujo, F.F.T., and Rosenberg, H. M., 1975, The Thermal Boundary Resistance at Epoxy-Resin/Metal Interfaces at Liquid Helium-Temperatures, in “Phonon Scattering in Solids,” L. J. Challis, V. M. Rampton and A.F.G. Wyatt, ed., Plenum, New York, p. 43.Google Scholar
  12. Ewing, W. M., Jardetsky, W. S., and Press, F., 1957, “Elastic Waves in Layered Media,” McGraw, New York.MATHGoogle Scholar
  13. Folinsbee, J. T., and Anderson, A. C., 1973, Anomalous Kapitza Resistance to Solid Helium, Phys. Rev. Lett., 31:1580.ADSCrossRefGoogle Scholar
  14. Garrett, K. W., and Rosenberg, H. M., 1974, The Thermal Conductivity of Epoxy-Resin/Powder Composite Materials, J. Phys. D, 7:1247.ADSCrossRefGoogle Scholar
  15. Herth, P., and Weis, O., 1970, Radiation Temperature of Thermal Phonon Radiators, Z. Angew. Phys., 29:102.Google Scholar
  16. Kapitza, P. L., 1941, The Study of Heat Transfer in Helium II, J. Phys. USSR, 4:181.Google Scholar
  17. Kaplan, S. B., 1979, Acoustic Matching of Superconducting Films to Substrates, J. Low Temp. Phys., 37:343.ADSCrossRefGoogle Scholar
  18. Katerberg, J. A., Reynolds, C. L., and Anderson, A. C., 1977, Calculations of the Thermal Boundary Resistance, Phys. Rev. B, 16:673.ADSCrossRefGoogle Scholar
  19. Kolsky, H., 1953, “Stress Waves in Solids,” Oxford, London.MATHGoogle Scholar
  20. Levinson, I. B., 1977, Boundary Conditions in Phonon Hydrodynamics, Sov. Phys. JETP, 46:165.ADSGoogle Scholar
  21. Little, W. A., 1959, The Transport of Heat Between Dissimilar Solids at Low Temperatures, Can. J. Phys., 37:334.ADSCrossRefGoogle Scholar
  22. Lumpkin, M. E., Saslow, W. M., and Visscher, W. M., 1978, One-Dimensional Kapitza Conductance: Comparison of the Phonon Mismatch Theory with Computer Experiments, Phys. Rev. B, 17:4295.ADSCrossRefGoogle Scholar
  23. Martinon, C., and Weis, O., 1979, α-Quartz as a Substrate in Thermal Phonon Radiation, Z. Phys. B, 32:259.ADSCrossRefGoogle Scholar
  24. Matsumoto, D. S., Reynolds, C. L., and Anderson, A. C., 1977, Thermal Boundary Resistance at Metal-Epoxy Interfaces, Phys. Rev. B, 16:3303.ADSCrossRefGoogle Scholar
  25. Miedema, A. R., Postma, H., van der Vlugt, N. J., and Steenland, M. J., 1959, Some Experiments on Heat Transfer Below 1°K, Physica, 25:509.ADSCrossRefGoogle Scholar
  26. Murmann, H., and Heber, J., 1977, The Phonon Spectrum of High Energy Heat Pulses Generated in Thin Metal Films, Z. Phys. B, 26:137.ADSCrossRefGoogle Scholar
  27. Narnhofer, H., Thirring, W., and Sexl, R., 1970, On the Theory of Interfacial Conductivity, Ann. Phys. (N.Y.), 57:350.ADSCrossRefGoogle Scholar
  28. Neeper, D. A., and Dillinger, J. R., 1964, Thermal Resistance at Indium-Sapphire Boundaries between 1.1 and 2.1°K, Phys. Rev., 135:A1028.ADSCrossRefGoogle Scholar
  29. O’Hara, S. G., and Anderson, A. C., 1974, Thermal Impedance Across Metallic and Superconducting Foils Below 1K, J. Phys. Chem. Solids, 35:1677.ADSCrossRefGoogle Scholar
  30. Opsal, J. L., and Pollack, G. L., 1974, Improved Calculations of the Kapitza Resistance: Combined Effects of Phonon Attenuation and Impedance Matching on Kapitza Resistance, Phys. Rev. A, 9:2227.ADSCrossRefGoogle Scholar
  31. Park, B. S., and Narahara, Y., 1971, Kapitza Resistance between Dielectrics and Metals in the Normal and Superconducting States, J. Phys. Soc. Jap., 30:760.ADSCrossRefGoogle Scholar
  32. Perrin, N., 1978, Determination of the Thermal Boundary Resistance in the Transport Approach, J. Low Temp. Phys., 31:257.ADSCrossRefGoogle Scholar
  33. Perrin, N., and Budd, H., 1972, Phonon Generation by Joule Heating in Metal Films, Phys. Rev. Lett., 28:1701.ADSCrossRefGoogle Scholar
  34. Peterson, R. E., and Anderson, A. C., 1972, The Transport of Heat Between Solids at Low Temperature, Solid State Commun., 10:891.ADSCrossRefGoogle Scholar
  35. Peterson, R. E., and Anderson, A. C., 1973, The Kapitza Thermal Boundary Resistance, J. Low Temp. Phys., 11:639.ADSCrossRefGoogle Scholar
  36. Phillips, M. C., and Sheard, F. W., 1976, Path-Integral Formulation of the Theory of Thermal Boundary Resistance, in “Phonon Scattering in Solids,” L. J. Challis, V. W. Rampton and A.F.C. Wyatt, ed., Plenum, New York, p. 24.CrossRefGoogle Scholar
  37. Pollack, G. L., 1969, Kapitza Resistance, Rev. Mod. Phys., 41:48.ADSCrossRefGoogle Scholar
  38. Reynolds, C. L., and Anderson, A. C., 1975, Thermal Boundary Resistance to Noncrystalline Dielectrics, J. Low Temp. Phys., 21:641.ADSCrossRefGoogle Scholar
  39. Reynolds, C. L., and Anderson, A. C., 1977, Thermal Boundary Resistance to Solid Helium, Hydrogen, Deuterium, and Neon. II, Phys. Rev. B, 15:5466.ADSCrossRefGoogle Scholar
  40. Rosch, F., and Weis, O., 1977, Phonon Transmission from Incoherent Radiators into Quartz, Sapphire, Diamond, Silicon and Germanium within Anisotropic Continuum Acoustics, Z. Phys. B, 27:33.ADSCrossRefGoogle Scholar
  41. Schmidt, C., 1975, Influence of the Kapitza Resistance on the Thermal Conductivity of Filled Epoxies, Cryogenics, 15:17.CrossRefGoogle Scholar
  42. Schmidt, C., 1977, Thermal Boundary (Kapitza) Resistance at Niobium-Epoxy Interfaces in the Superconducting and Normal States, Phys. Rev. B, 15:4187.ADSCrossRefGoogle Scholar
  43. Schmidt, C., 1974, Thermal Boundary Resistance at Interfaces Between Two Dielectrics, Phys. Lett., 50A:241.ADSGoogle Scholar
  44. Schmidt, C., and Umlauf, E., 1976, Thermal Boundary Resistance at Interfaces Between Sapphire and Indium, J. Low Temp. Phys., 22:597.ADSCrossRefGoogle Scholar
  45. Schumann, B., Netsche, F., and Paasch, G., 1980, Thermal Conductance of Metal Interfaces at Low Temperatures, J. Low Temp. Phys., 38:167.ADSCrossRefGoogle Scholar
  46. Sheard, F. W., Bowley, R. M., and Toombs, G. A., 1973, Microscopic Theory of the Kapitza Resistance at a Solid-Liquid 4He Interface, Phys. Rev. A, 8:3135.ADSCrossRefGoogle Scholar
  47. Simons, S., 1974, On the Thermal Contact Resistance Between Insulators, J. Phys. C, 7:4048.ADSCrossRefGoogle Scholar
  48. Steinbruchei, C., 1976, The Scattering of Phonons of Arbitrary Wavelength at a Solid-Solid Interface: Model Calculation and Applications, Z. Phys. B, 24:293.ADSCrossRefGoogle Scholar
  49. Stonely, R., 1924, Elastic Waves at the Surface of Separation of Two Solids, Proc. Roy Soc., A106:416.ADSGoogle Scholar
  50. Suomi, M., Anderson, A. C., and Holmstrom, B., 1968, Heat Transfer Below 0.2°K, Physica, 38:67.ADSCrossRefGoogle Scholar
  51. Taborek, P., and Goodstein, D. L., 1980, The Anomalous Kapitza Conductance is not a Quantum Effect, Bull. Am. Phys. Soc., 25:407.Google Scholar
  52. Weis, O., 1969, Thermal Phonon Radiation, Z. Angew, Phys., 26:325.Google Scholar
  53. Weis, O., 1979, Reflection, Transmission and Mode Conversion of Plane Sound Waves at a Plane Interface Between Two Different Anisotropic Solids, Z. Phys. B, 34:55.ADSCrossRefGoogle Scholar
  54. Wolfmeyer, M. W., Fox, G. T., and Dillinger, J. R., 1970, An Electron Contribution to the Thermal Conduction Across a Metal-Solid Dielectric Interface, Phys. Lett., 31A: 401.ADSGoogle Scholar
  55. Zelikman, M. A., and Spivak, B. Z., 1979, Role of Slow Relaxation Processes in the Formation of the Kapitza Jump on the Boundary Between a Superconductor and a Dielectric, Sov. Phys. JETP, 49:377.ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • A. C. Anderson
    • 1
  1. 1.Department of Physics and Materials Research LaboratoryUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations