Electron Microscopy of Skeletal Aging

  • Edgar A. Tonna


Several ultrastructural studies of aging cartilage are known (Barnett et al., 1963; Silberberg et al., 1961, 1964, 1970), and a few electron microscopic studies have been reported on bone aging per se (Tonna, 1972a,b, 1973a-c, 1974b, 1975a,b, 1976b, 1978, 1979). The paucity of the literature understandably stems from the technical burdens of aging studies, and the problem of finding suitable animal models. An animal colony must be bred by the investigator for years at significant cost in advance of commencing an experiment in order to reap sufficient animal numbers to constitute a study. Aged animals of suitable quality and recorded birth dates usually cannot be purchased. Furthermore, the studies are generally long-term and technically more difficult to execute and especially to interpret. Existence of these caveats does not, however, justify our ignorance of the ultrastructural changes of aging skeletal tissues when significant biomedical problems exist concomitant with, or in a cause and effect or contributional relationship with, aging. Such problems are an integral part of known skeletal and degenerative joint diseases, to physiologic imbalances, as well as to biomechanical problems with congenital and growth anomalies or surgical and accidental perturbations. In oral biology, alveolar bone loss in association with periodontal disease and aging is paramount to gerodontics. Knowledge of age changes is not exclusively significant to biomedical gerontology and geriatrics, but scientific information regarding the entire life cycle of cells and their matrices is necessary to a fuller understanding of the behavior and response potential of these bioelements to natural environmental and induced stresses of all types experienced throughout the life span of the individual.


Articular Cartilage Bone Surface Rough Endoplasmic Reticulum Osteogenic Cell Cartilage Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, D. R., 1964, The ultrastructure of elastic and hyaline cartilage, Am. J. Anat. 114:403.PubMedGoogle Scholar
  2. Appleton, J., 1975, The ultrastructure of the articular tissue of the mandibular condyle in the rat, Arch. Oral. Biol. 20:823.PubMedGoogle Scholar
  3. Arey, L. B., 1919, The origin, growth and fate of osteoclasts and their relation to bone resorption, Am. J. Anat. 26:315.Google Scholar
  4. Arnold, J. S., and Jee, W. S. S., 1957, Bone growth and osteoclast activity as indicated by radioautographic distribution of plutonium, Am. J. Anat. 101:367.PubMedGoogle Scholar
  5. Ascenzi, A., 1955, Die Knochengewebstruktur untersucht mit dem Electromicroskop, Sci. Med. Ital. 8:701.Google Scholar
  6. Ascenzi, A., and Benedetti, E. C., 1959, An electron microscopic study of foetal membranous ossification, Acta Anat. 37:370.PubMedGoogle Scholar
  7. Ascenzi, A., and Bonucci, E., 1966, The osteon calcification as revealed by the electron microscope, in: Calcified Tissues (H. Fleisch, H. J. J. Blackwood, and M. Owen, eds.), Springer-Verlag, Berlin.Google Scholar
  8. Bang, F. B., and Gay, G. O., 1948, A fibrillar structure in rat fibroblasts as seen by electron microscopy, Proc. Soc. Exp. Biol. Med. 69:86.PubMedGoogle Scholar
  9. Barnett, C. H., Cochrane, W., and Palfrey, A. J., 1963, Age changes in articular cartilage of rabbits, Ann. Rheum. Dis. 22:389.PubMedGoogle Scholar
  10. Baud, C. A., 1962, Morphologie et structure inframicroscopique des ostéocytes, Acta Anat. 51:209.PubMedGoogle Scholar
  11. Baud, C. A., 1968, Submicroscopic structure and functional aspects of the osteocyte, Clin. Orthop. 56:227.PubMedGoogle Scholar
  12. Baud, C. A., and Dupont, D. H., 1965, La structure submicroscopique des osteocytes en rapport avec leur fonction, in: Second European Symposium on Calcified Tissues (L. J. Richelle and M. J. Dallemagne, eds.), pp. 31–37, Wegermont, Belgium.Google Scholar
  13. Baylink, D. J., and Weregedal, J. E., 1971a, Bone formation by osteocytes, Am. J. Physiol. 221:669.PubMedGoogle Scholar
  14. Baylink, D., and Wergedal, J. E., 1971b, Bone formation and resorption by osteocytes, in: Cellular Mechanisms for Calcium Transfer and Homeostasis (G. Nichols, Jr., and R. H. Wasserman, eds.), pp. 257–289, Academic Press, New York.Google Scholar
  15. Bélanger, L. F., 1965, Osteolysis: An outlook on its mechanism and causation, in: The Parathyroid Glands: Ultrastructure, Secretion and Function (P. J. Gaillard, R. V. Talmage, and A. M. Budy, eds.), pp. 137–143, University of Chicago Press, Chicago.Google Scholar
  16. Bélanger, L. F., and Migicovsky, B. B., 1963, Histochemical evidence of proteolysis in bone: The influence of parathormone, J. Histochem. Cytochem. 11:734.Google Scholar
  17. Bernard, G. W., and Pease, D. C., 1969, An electron microscopic study of initial intramembranous osteogenesis, Am. J. Anat. 125:271.PubMedGoogle Scholar
  18. Bloom, W., and Fawcett, D. W., 1966, A Textbook of Histology, 8th ed., p. 164, Saunders, Philadelphia.Google Scholar
  19. Bloom, W., Bloom, M. A., and McLean, F. C., 1941, Calcification and ossification. Medullary bone changes in the reproductive cycle of female pigeons, Anat. Rec. 81:443.Google Scholar
  20. Burstone, M. S., 1959, Histochemical demonstration of acid phosphatase activity in osteoclasts, J. Histochem. Cytochem. 7:39.PubMedGoogle Scholar
  21. Cameron, D. A., 1961, The fine structure of osteoblasts in the metaphysis of the tibia of the young rat, J. Biophys. Biochem. Cytol. 9:583.PubMedGoogle Scholar
  22. Cameron, D. A., 1963, The fine structure of bone and calcified cartilage, Clin. Orthop. 26:199.PubMedGoogle Scholar
  23. Cameron, D. A., 1968, The Golgi apparatus in bone and cartilage cells, Clin. Orthop. 58:191.PubMedGoogle Scholar
  24. Cameron, D. A., 1969, The fine structure and function of bone cells, in: The Biological Basis of Medicine (E. Bittar and N. Bittar, eds.), Vol. 3, pp. 391–423, Academic Press, New York.Google Scholar
  25. Cameron, D. A., 1972, The ultrastructure of bone, in: The Biochemistry and Physiology of Bone: Structure (G. H. Bourne, ed.), Vol. 1, pp. 191–236, Academic Press, New York.Google Scholar
  26. Cameron, D. A., and Robinson, R. A., 1958, The presence of crystals in the cytoplasm of large cells adjacent to sites of bone absorption, J. Bone Jt. Surg. 40A:414.Google Scholar
  27. Cameron, D. A., Paschall, H. A., and Robinson, R. A., 1964, The ultrastructure of bone cells, in: Bone Biodynamics (H. M. Frost, ed.), pp. 91–104, Little, Brown, Boston.Google Scholar
  28. Ch’uan, C. H., 1931, Mitochondria in osteoclasts, Anat. Rec. 49:397.Google Scholar
  29. Clark Anderson, H., 1967, Electron microscopic studies of induced cartilage development and calcification, J. Cell Biol. 35:81.Google Scholar
  30. Clark Anderson, H., 1969, Vesicles associated with calcification in the matrix of epiphyseal cartilage, J. Cell Biol. 41:59.Google Scholar
  31. Collins, D. H., Ghadially, F. N., and Meachim, G., 1965, Intracellular lipids of cartilage, Ann. Rheum. Dis. 24:123.PubMedGoogle Scholar
  32. Decker, J. D., 1962, Electron microscopy of fibril morphology in developing bone, Anat. Rec. 142:225.Google Scholar
  33. Dudley, H. R., and Spiro, D., 1961, The fine structure of bone cells, J. Biophys. Biochem. Cytol. 11:627.PubMedGoogle Scholar
  34. Dulce, H. J., 1975, Biochemistry of bone diseases, in: Calcium Metabolism, Bone and Metabolic Bone Diseases (F. Kuhlencordt and H. P. Kruse, eds.), pp. 197–210, Springer-Verlag, New York.Google Scholar
  35. Dziewiatkowski, D. D., 1954, Effect of age on some aspects of sulfate metabolism in the rat, J. Exp. Med. 99:283.PubMedGoogle Scholar
  36. Engfeldt, B., 1969, Studies on the epiphyseal growth zone. III. Electronmicroscopic studies on the normal epiphyseal growth zone, Acta Pathol. Microbiol. Scand. 75:201.PubMedGoogle Scholar
  37. Fernandez-Moran, H., and Engström, A., 1956, Ultrastructural organization of bone, Nature (London) 178:494.Google Scholar
  38. Fishman, D. A., and Hay, E. D., 1962, Origin of osteoclasts from mononuclear leukocytes in regenerating newt limbs, Anat. Rec. 143:329.Google Scholar
  39. Frost, H. M., 1960, A new bone affliction “feathering,” J. Bone Jt. Surg. 42A:447.Google Scholar
  40. Godman, G. C., and Porter, K. R., 1960, Chondrogenesis, studied with the electron microscope, J. Biophys, Biochem. Cytol. 8:719.Google Scholar
  41. Gonzales, F., and Karnovsky, M. J., 1961, Electron microscopy of osteoclasts in the healing fractures of rat bone, J. Biophys. Biochem. Cytol. 9:299.PubMedGoogle Scholar
  42. Greer, R. B., Skinner, S., Zarins, A., and Mankin, H. J. 1972, Distribution of acidic glycosaminoglycans in rabbit growth plate cartilage, Calcif. Tissue Res. 9:194.PubMedGoogle Scholar
  43. Haggquist, J., 1934, Larbok i Histol. o. Embryol. f. Tandl. Stud, Bonnier, Stockholm.Google Scholar
  44. Ham. A. W., and Harris, W. R., 1971, Repair and transplantation of bone, in The Biochemistry and Physiology of Bone. Development and Growth (G. H. Bourne, ed.), Vol. 3, 2nd ed., pp. 338–399, Academic Press, New York.Google Scholar
  45. Hancox, N., 1956, The osteoclast, in: The Biochemistry and Physiology of Bone (G. H. Bourne, ed.), pp. 213–250, Academic Press, New York.Google Scholar
  46. Hancox, N. M., and Boothroyd, B. B., 1964, Ultrastructure of bone formation and resorption, in: Modern Trends in Orthopaedics—Science of Fractures (J. M. P. Clark, ed.), Vol. 4, pp. 26–52, Butterworths, London.Google Scholar
  47. Hancox, H. M., and Boothroyd, B., 1965, Electron microscopy of the early stages of osteogenesis, Clin. Orthop. 40A:153.Google Scholar
  48. Hansen, H. J., 1956, Studies of pathology of the lumbosacral disc in female cattle. Acta Orthopaed. Scand. 25:161.Google Scholar
  49. Heller-Steinberg, M., McLean, F. C., and Bloom, W., 1950, Cellular transformations in mammalian bones induced by parathyroid extract, Am. J. Anat. 87:315.Google Scholar
  50. Holtrop, M. E., 1972a, The ultrastructure of the epiphyseal plate. I. The flattened chondrocyte, Calcif. Tissue Res. 9:131.PubMedGoogle Scholar
  51. Holtrop, M. E., 1972b, The ultrastructure of the epiphyseal plate. II. The hypertrophic chondrocyte, Calcif. Tissue Res. 9:140.PubMedGoogle Scholar
  52. Jackson, S. F., 1957, The fine structure of developing bone in the embryonic fowl, Proc. R. Soc. London Ser. B 146:270.Google Scholar
  53. Jande, S. S., 1971, Fine structural study of osteocytes and their surrounding bone matrix with respect to their age in young chicks, J. Ultrastruct. Res. 37:279.PubMedGoogle Scholar
  54. Jande, S. S., and Bélanger, L. F., 1971, Electron microscopy of osteocytes and the pericellular matrix in rat trabecular bone, Calcif. Tissue Res. 6:280.PubMedGoogle Scholar
  55. Jande, S. S., and Bélanger, L. F., 1973, The life cycle of the osteocyte, Clin. Orthop. 94:281.PubMedGoogle Scholar
  56. Jebens, E. H., and Monk-Jones, M. E., 1959, On the viscosity and pH of synovial fluid and the pH of blood, J. Bone Joint Surg. 41B:388.Google Scholar
  57. Jeffrey, M. R., 1960, The waning joint, Am. J. Med. Sci. 239:104.PubMedGoogle Scholar
  58. Jowsey, J., 1960, Age changes in human bone, Clin. Orthop. 17:210.Google Scholar
  59. Jowsey, J., 1963, Microradiography of bone resorption, in: Hard Tissue Destruction (R. F. Sognnaes, ed.), pp. 447–469, Publication No. 75, American Association for the Advancement of Science, Washington, D.C.Google Scholar
  60. Jowsey, J., 1973, Autoradiographic and microradiographic studies of bone, in: Biological Mineralization (I. Zipkin, ed.), pp. 297–333, Wiley, New York.Google Scholar
  61. Kanese, K. H., and Knoop, A. M., 1958, Electronenoptische Unterschungen uber die Periostale Osteogenese, Z. Zellforsch. Mikrosk. Anat. 48:455.Google Scholar
  62. Kaplan, D., and Meyer, K., 1959, Ageing of human cartilage, Nature (London) 183:1267.Google Scholar
  63. Kohn, R. R., 1971, Principles of Mammalian Aging, pp. 44–77, Prentice-Hall, Englewood Cliffs, N.J.Google Scholar
  64. Kölliker, A., 1873, Die normale Resorption des Knochengewebes und ihre Bedeutung fru die Entstehung der typischen Knochenformen, Vogel, Leipzig.Google Scholar
  65. Lucht, U., 1971, Acid phosphatase of osteoclasts demonstrated by electron microscopic histochemistry, Histochemie 28:103.PubMedGoogle Scholar
  66. Lucht, U., 1972a, Osteoclasts and their relationship to bone as studied by electron microscopy, Z. Zellforsch. Mikrosk. Anat. 135:211.PubMedGoogle Scholar
  67. Lucht, U., 1972b, Cytoplasmic vacuoles and bodies of the osteoclast. An electron microscope study, Z. Zellforsch. Mikrosk. Anat. 135:229.PubMedGoogle Scholar
  68. Lucht, U., 1972c, Absorption of peroxidase by osteoclasts as studied by electron microscopy histochemistry, Histochemie 29:274.PubMedGoogle Scholar
  69. Lucht, U., 1973a, Effects of calcitonin on osteoclasts in vivo. An ultrastructural and histochemical study, Z. Zeilforsch. Mikrosk. Anat. 145:75.Google Scholar
  70. Lucht, U., 1973b, Electron microscope observations of centrioles in osteoclasts, Z. Anat. Entwicklungsgesch. 140:143.PubMedGoogle Scholar
  71. Lucht, U., and Maunsbach, A. B., 1973, Effects of parathyroid hormone on osteoclasts in vivo. An ultrastructural and histochemical study, Z. Zeilforsch. Mikrosk. Anat. 141:529.Google Scholar
  72. Macewen, W., 1912, The Growth of Bone, Macehlose, Glasgow.Google Scholar
  73. Mankin, H. J., 1962, Localization of tritiated thymidine in articular cartilage. II. Repair in immature cartilage, J. Bone Jt. Surg. 44A:688.Google Scholar
  74. Mankin, H. J., 1963, Localization of tritiated thymidine in articular cartilage of rabbits. III. Mature articular cartilage, J. Bone Jt. Surg. 45A:529.Google Scholar
  75. Mankin, H. J., 1964, Mitosis in articular cartilage of immature rabbits. A histologic, strathmokinetic (colchicine) and autoradiographic study, Clin. Orthop. Relat. Res. 34:170.PubMedGoogle Scholar
  76. Matsuzawa, T., and Clark Anderson, H., 1971, Phosphatases of epiphyseal cartilage studies by electron microscopic cytochemical methods, J. Histochem. Cytochem. 19:801.PubMedGoogle Scholar
  77. Matthews, J. L., Martin, J. H., and Race, G. J., 1967, Giant-cell centrioles, Science 155:1423.PubMedGoogle Scholar
  78. Myers, H. I., Waterman, J. M., Black, R., and Flanagan, V., 1959, The relative number of osteoclasts in normal and rachitogenic guinea pig mandibular condyles, Anat. Rec. 133:487.PubMedGoogle Scholar
  79. Nichols, G., Jr., 1970, Bone résorption and calcium homeostasis: One process or two?, Calcif. Tissue Res. Suppl. 4:61.Google Scholar
  80. Ortner, D. J., 1975, Aging effects on osteon remodeling, Calcif. Tissue Res. 18:27.PubMedGoogle Scholar
  81. Pavelec, M., Tonna, E. A., and Fand, I., 1967, The localization and distribution of protein-bound sulfhydryl and disulfide groups in skeletal tissues of mice during growth and aging, J. Gerontol. 22:185.PubMedGoogle Scholar
  82. Pritchard, J. J., 1972, General Histology of bone, in: The Biochemistry and Physiology of Bone. Structure (G. H. Bourne, ed.), Vol 1, 2nd ed., pp. 1–20, Academic Press, New York.Google Scholar
  83. Revel, J. P., and Hay, E. D., 1963, An autoradiographic and electron microscopic study of collagen synthesis in differentiating cartilage, Z. Zeilforsch. 61:110.Google Scholar
  84. Rifkin, B., Sanavi, F., Baker, R., and Brand, J., 1979, Identification and characterization of preosteoclasts in fetal rat calvarium, J. Dent. Res. 58:430.Google Scholar
  85. Robinson, R. A., and Cameron, D. A., 1956, Electron microscopy of cartilage and bone matrix at the distal epiphyseal line of the femur in the newborn infant, J. Biophys. Biochem. Cytol. 2(Suppl.):253.Google Scholar
  86. Robinson, R. A., and Cameron, D. A., 1957, The organic matrix of bone and epiphyseal cartilage, Clin. Orthop. 9:16.PubMedGoogle Scholar
  87. Robinson, R. A., and Cameron, D. A., 1958, Electron microscopy of the primary spongiosa of the metaphysis at the distal end of the femur in the newborn infant, J. Bone Jt. Surg. 40A:687.Google Scholar
  88. Robinson, R. A., and Sheldon, H., 1960, Crystal-collagen relationships in healing rickets, in: Calcification in Biological Systems (R. F. Sognnaes, ed.), pp. 261–279, American Association for the Advancement of Science, Washington, D.C.Google Scholar
  89. Robinson, R. A., and Watson, M. L., 1952, Crystal-collagen relationships in bone as seen in the electron microscope, Anat. Rec. 114:383.PubMedGoogle Scholar
  90. Robinson, R. A., and Watson, M. L., 1955, Crystal-collagen relationships in bone as observed in the electron microscope. III. Crystal and collagen morphology as a function of age, Ann. N.Y. Acad. Sci. 60:596.PubMedGoogle Scholar
  91. Rosenberg, L., Johnson, B., and Schubert, M., 1965, Proteinpolysaccharides from human articular and costal cartilage, J. Clin. Invest. 44:1647.PubMedGoogle Scholar
  92. Schajowicz, F., and Cabrini, R. L., 1958, Histochemical localization of acid phosphatase in bone tissue, Science 127:1447.PubMedGoogle Scholar
  93. Scherft, J. P., 1968, The ultrastructure of the organic matrix of calcified cartilage and bone in embryonic mouse radii, J. Ultrastruct. Res. 23:333.Google Scholar
  94. Scherft, J. P., 1972, The lamina limitans of the organic matrix of calcified cartilage and bone, J. Ultrastruct. Res. 38:318.PubMedGoogle Scholar
  95. Schwartz, W., and Pahlke, G., 1953, Electronenmikroskopische Unterschungen an der Interzellularsubstanz des menschlichen Knochengewebes, Z. Zellforsch. Mikrosk. Anat. 38:475.Google Scholar
  96. Scott, B. L., 1967, The occurrence of specific cytoplasmic granules in the osteoclast, J. Ultrastruct. Res. 19:417.PubMedGoogle Scholar
  97. Scott, B. L., and Pease, D. C., 1956, Electron microscopy of the epiphyseal apparatus, Anat. Rec. 126:465.PubMedGoogle Scholar
  98. Severson, A. R., Tonna, E. A., and Pavelec, M., 1967, Histochemical demonstration of adenosine triphosphatase in osteoclasts, J. Histochem. Cytochem. 15:550.PubMedGoogle Scholar
  99. Severson, A. R., Tonna, E. A., and Pavelec, M., 1968, Localization and distribution of adenosine triphosphatase activity in the femurs of young mice, Anat. Rec. 161:57.PubMedGoogle Scholar
  100. Sheldon, H., and Kimball, F. B., 1962, Studies on cartilage. III. The occurrence of collagen within the vacuoles of the Golgi apparatus, J. Cell Biol. 12:599.PubMedGoogle Scholar
  101. Sheldon, H., and Robinson, R. A., 1957, Electron microscope studies of crystal-collagen relationships in bone. IV. The occurrence of crystals within collagen fibrils, J. Biophys. Biochem. Cytol. 3:1011.PubMedGoogle Scholar
  102. Sherman, M. S., and Selakovitch, W. G., 1957, Bone changes in chronic circulatory insufficiency, J. Bone Jt. Surg. 39A:892.Google Scholar
  103. Shipley, P. G., Kramer, B., and Howland, J. L., 1926, Studies upon calcification in vitro, Biochem. J. 20:379.PubMedGoogle Scholar
  104. Silberberg, M., and Silberberg, R., 1961, Ageing changes in cartilage and bone, in: Structural Aspects of Ageing (G. H. Bourne, ed.), pp. 85–108, Hafner, New York.Google Scholar
  105. Silberberg, M., and Silberberg, R., 1971, Steroid hormones and bone, in: The Biochemistry and Physiology of Bone: Development and Growth (G. H. Bourne, ed.), Vol. 3, pp. 401–484, Academic Press, New York.Google Scholar
  106. Silberberg, R., Silberberg, M., Vogel, A., and Wettstein, W., 1961, Ultrastructure of articular cartilage of mice of various ages, Am. J. Anat. 109:251.PubMedGoogle Scholar
  107. Silberberg, R., Silberberg, M., and Feir, D., 1964, Life cycle of articular cartilage cells: An electron microscopic study of the hip joint of the mouse, Am. J. Anat. 114:17.PubMedGoogle Scholar
  108. Silberberg, R., Stamp, W. G., Lasker, P. A., and Hasler, M., 1970, Aging changes in ultrastructure and enzymatic activity of articular cartilage of guinea pigs, J. Gerontol. 25:184.PubMedGoogle Scholar
  109. Silberberg, R., Hasler, M., and Lasker, P. A., 1973, Aging of the shoulder joint of guinea pigs. Electron microscopic and quantitative histochemical aspects, J. Gerontol. 28:18.PubMedGoogle Scholar
  110. Sobel, H., 1967, Aging of ground substance in connective tissue, in: Advances in Gerontological Research (B. L. Strehler, ed.), Vol. 2, pp. 205–248, Academic Press, New York.Google Scholar
  111. Sokoloff, L., 1969, The Biology of Degenerative Joint Disease, pp. 24–30, 63, University of Chicago Press, Chicago.Google Scholar
  112. Stidworthy, G., Masters, Y. F., and Shetlar, M. R., 1958, The effect of aging on mucopolysaccharide composition of human costal cartilage as measured by hexosamine and uronic acid content, J. Gerontol. 13:10.PubMedGoogle Scholar
  113. Stockwell, R. A., 1967, The cell density of human articular and costal cartilage, J. Anat. 101:753.PubMedGoogle Scholar
  114. Takuma, S., 1960, Electron microscopy of the developing cartilaginous epiphysis, Arch. Oral Biol. 2:111.PubMedGoogle Scholar
  115. Talmage, R. V., 1969, Calcium homeostasis-calcium transport-parathyroid action, Clin. Orthop. Relat. Res. 67:210.Google Scholar
  116. Talmage, R. V., Wilmer, L. T., and Toft, R. J., 1960, Additional evidence in support of McLean’s feedback mechanism of parathyroid action on bone, Clin. Orthop. Relat. Res. 17:195.Google Scholar
  117. Thyberg, J., 1974, Electron microscopic studies on the initial phases of calcification in guinea pig epiphyseal cartilage, J. Ultrastruct. Res. 46:206.PubMedGoogle Scholar
  118. Tonna, E. A., 1960, Osteoclasts and the aging skeleton: A cytological, cytochemical and autoradiographic study, Anat. Rec. 137:251.PubMedGoogle Scholar
  119. Tonna, E. A., 1961, The cellular complement of the skeletal system studied autoradiographically with tritiated thymidine (H3TDR) during growth and aging, J. Biophys. Biochem. Cytol. 9:813.PubMedGoogle Scholar
  120. Tonna, E. A., 1964, An autoradiographic evaluation of the aging cellular phase of mouse skeleton using tritiated glycine, J. Gerontol. 19:198.PubMedGoogle Scholar
  121. Tonna, E. A., 1965, Skeletal cell aging and its effects on the osteogenetic potential, Clin. Orthop. Relat. Res. 40:57.PubMedGoogle Scholar
  122. Tonna, E. A., 1966a, Response of the cellular phase of the skeleton to trauma, Periodontics 4:105.PubMedGoogle Scholar
  123. Tonna, E. A., 1966b, A study of osteocyte formation and distribution in aging mice complemented with H3-proline autoradiography, J. Gerontol. 21:124.PubMedGoogle Scholar
  124. Tonna, E. A., 1966c, H3-histidine and H3-thymidine autoradiographic studies of the possibility of osteoclast aging, Lab. Invest. 15:435.PubMedGoogle Scholar
  125. Tonna, E. A., 1971a, An autoradiographic study of H3-proline utilization by aging mouse skeletal tissues. II. Cartilage cell compartments, Exp. Gerontol. 6:405.PubMedGoogle Scholar
  126. Tonna, E. A., 1971b, An autoradiographic study of H3-proline utilization by aging mouse skeletal tissues. III. Estimation and comparison of the turnover times of different cell compartments, Gerontologia 71:273.Google Scholar
  127. Tonna, E. A., 1972a, An electron microscopic study of osteocyte release during osteoclasis in mice of different ages, Clin. Orthop. 87:311.PubMedGoogle Scholar
  128. Tonna, E. A., 1972b, Electron microscopic evidence of alternating osteocytic-osteoclastic and osteoplastic activity in the perilacunar walls of aging mice, Connect. Tissue Res. 1:221.Google Scholar
  129. Tonna, E. A., 1973a, An electron microscopic study of periosteal changes during aging, Gerontologist 13:40.Google Scholar
  130. Tonna, E. A., 1973b, An electron microscopic study of skeletal cell aging. 11. The osteocyte, Exp. Gerontol. 8:9.PubMedGoogle Scholar
  131. Tonna, E. A., 1973c, Hormonal influence on skeletal growth and regeneration, in: Humoral Control of Growth and Differentiation: Vertebrate Regulatory Factors (J. LoBue and A. S. Gordon, eds.), Vol. 1, pp. 275–359, Academic Press, New York.Google Scholar
  132. Tonna, E. A., 1974a, Topographic labeling method using 3H-proline in assessment of skeletal growth and remodeling in 5-week-old mice, Lab. Invest. 30:161.Google Scholar
  133. Tonna, E. A., 1974b, Electron microscopy of aging skeletal cells. III. The periosteum, Lab. Invest. 31:609.PubMedGoogle Scholar
  134. Tonna, E. A., 1975a, Accumulation of lipofuscin (age pigment) in aging skeletal connective tissues as revealed by electron microscopy, J. Gerontol. 30:3.PubMedGoogle Scholar
  135. Tonna, E. A., 1975b, Aging of bone, in: Periodontal Surgery—Biologic Rationale and Techniques (S. S. Stahl, ed.), pp. 121–188, Thomas, Springfield, Ill.Google Scholar
  136. Tonna, E. A., 1976a, Assessment of skeletal aging using the 3H-proline topographic labeling method, Lab. Invest. 35:221.PubMedGoogle Scholar
  137. Tonna, E. A., 1976b, Factors (aging) affecting bone and cementum, J. Periodontol. 47:267.PubMedGoogle Scholar
  138. Tonna, E. A., 1977, Aging of skeletal-dental systems and supporting tissues, in: Handbook of the Biology of Aging (C. E. Finch and L. Hayflick, eds.), pp. 470–495, Van Nostrand-Reinhold, New York.Google Scholar
  139. Tonna, E. A., 1978, Electron microscopic study of bone surface changes during aging. The loss of cellular control and biofeedback, J. Gerontol. 33:163.PubMedGoogle Scholar
  140. Tonna, E. A., 1979, Explorations into the aging of skeletal-dental tissues: An ultrastructural study of aging cementum, in: Geriatric Dentistry: Clinical Application of Selected Biomedical and Psychological Topics (C. J. Toga, K. Nandy, and H. H. Chauncey, eds.), pp. 23–45, D. C. Heath, Lexington Books, Lexington, Mass.Google Scholar
  141. Tonna, E. A., and Arce, J., 1978, An electron microscopic survey of old connective tissues for lipofuscin, Gerontol. Soc. 18:133.Google Scholar
  142. Tonna, E. A., and Cronkite, E. P., 1960, Autoradiographic studies of changes in S35-sulfate uptake by the femoral diaphyses during aging, J. Gerontol. 15:377.PubMedGoogle Scholar
  143. Tonna, E. A., and Cronkite, E. P., 1961, Use of tritiated thymidine for the study of the origin of the osteoclast, Nature (London) 190:459.Google Scholar
  144. Tonna, E. A., and Cronkite, E. P., 1962, Utilization of tritiated histidine (H3HIL) by skeletal cells of adult mice, J. Gerontol. 17:353.PubMedGoogle Scholar
  145. Tonna, E. A., and Cronkite, E. P., 1964, A study of persistence of the H3-thymidine label in the femora of rats, Lab. Invest. 13:161.PubMedGoogle Scholar
  146. Tonna, E. A., and Cronkite, E. P., 1968, Skeletal cell labeling following continuous infusion with tritiated thymidine, Lab. Invest. 19:510.PubMedGoogle Scholar
  147. Tonna, E. A., and Lampen, N. M., 1972, Electron microscopy of aging skeletal cells. I. Centrioles and solitary cilia, J. Gerontol. 27:316.PubMedGoogle Scholar
  148. Tonna, E. A., and Pavelec, M., 1971, An autoradiographic study of H3-proline utilization by aging mouse skeletal tissues. I. Bone cell compartments, J. Gerontol. 26:310.PubMedGoogle Scholar
  149. Tonna, E. A., and Severson, A. R., 1971, Changes in the localization and distribution of adenosine triphosphatase activity in skeletal tissues of the mouse concomitant with aging, J. Gerontol. 26:186.PubMedGoogle Scholar
  150. Tonna, E. A., and Singh, I. J., 1973, The uptake and utilization of 3H-uridine by young mouse cartilage cells studied autoradiographically, Lab. Invest. 28:300.PubMedGoogle Scholar
  151. Tonna, E. A., and Singh, I. J., 1976, An autoradiographic investigation of 3H-uridine utilization by aging mouse cartilage cell, Exp. Gerontol. 11:231.PubMedGoogle Scholar
  152. Tonna, E. A., Cronkite, E. P., and Pavelec, M., 1962, An autoradiographic study of the localization and distribution of tritiated histidine in bone, J. Histochem. Cytochem. 10:601.Google Scholar
  153. Tonna, E. A., Cronkite, E. P., and Pavelec, M., 1963, A serial autoradiographic analysis of H3-glycine utilization and distribution in the femora of growing mice, J. Histochem. Cytochem. 11:720.Google Scholar
  154. Urist, M. R., and McLean, F. C., 1961, Bone: An Introduction to the Physiology of Skeletal Tissue, p. 6, University of Chicago Press, Chicago.Google Scholar
  155. Vincent, J., 1959, Autoradiographic studies on bone sodium, in: Radioisotopes and Bone (F. C. McLean, ed.), David Pub., Philadelphia.Google Scholar
  156. Watanabe, H., 1965, Electronic microscopic studies on the ossification in chick tibia. III. Ossification and osteogenic cells, Kumamoto Med. J. 18:156.PubMedGoogle Scholar
  157. Young, R. W., 1962a, Autoradiographic studies on post-natal growth of the skull in young rats injected with tritiated glycine, Anat. Rec. 143:1.PubMedGoogle Scholar
  158. Young, R. W., 1962b, Cell proliferation and specialization during endochondral osteogenesis in young rats, J. Cell Biol. 14:357.PubMedGoogle Scholar
  159. Young, R. W., 1962c, Regional differences in cell generation time in growing rat tibiae, Exp. Cell Res. 26:562.PubMedGoogle Scholar
  160. Young, R. W., 1964, Specialization of bone cells, in: Bone Biodynamics (H. M. Frost, ed.), pp. 117–147, Little, Brown, Boston.Google Scholar
  161. Zichner, L., 1971, The effect of calcitonin on bone cells in young rats, in: Calcified Tissue: Structural, Functional and Metabolic Aspects (J. Menczel and A. Harell, eds.), pp. 27–34, Academic Press, New York.Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Edgar A. Tonna
    • 1
  1. 1.Institute for Dental ResearchNew York University Dental CenterNew YorkUSA

Personalised recommendations