Neurofibrillary and Synaptic Pathology in the Aged Brain

  • Henryk M. Wisniewski
  • Raymond S. Sinatra
  • Khalid Iqbal
  • Inge Grundke-Iqbal


Normal aging in the human brain may be thought of as a state in which pathological alterations exist without obvious clinical expression. Unlike other organs in which there is a repetition of structural-functional units, the brain is a complex collection of groups of nerve cells, each with varying metabolic and functional characteristics (a multiorgan organ). A decline in the number of brain cells or key connections with one another, when below a critical reserve level, would be expected to result in a deterioration of function, and create difficulties in coping with additional noxious or infectious stress. At the same time, genetically programmed time-associated changes in aging brain cells may increase their susceptibility to harmful environmental effects (hormonal, infectious, immunological) and lead to various pathological changes found in the aged brain.


Neurofibrillary Tangle Senile Plaque Amyloid Fibril Senile Dementia Neuritic Plaque 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alfrey, A. C., LeGendre, G. R., and Kaehny, W. D., 1976, The dialysis encephalopathy syndrome: Possible aluminum intoxication, V. Engl. J. Med. 294:184–188.Google Scholar
  2. Alzheimer, A., 1907, Über eine eigenartige Erkrankung der Hirnrinde, Zentralbl. Nervenheilkunde Psychiatrie 18:177–179.Google Scholar
  3. Benditt, E.P., 1976, The structure of amyloid protein AA and evidence for a transmissible factor in the origin of amyloidosis, in: Proceedings of the 5th Sigrid Juselius Foundation Symposium (D. Wegelius and A. Pasternak, eds.), pp. 323–332, Academic Press, New York.Google Scholar
  4. Berl, S., Puszkin, S., and Nicklas, H. J., 1973, Actomyosin-like protein in brain, Science 179:441–443.PubMedGoogle Scholar
  5. Brizzee, K. R., Ordy, J. M., and Kaack, B., 1974, Early appearance and regional differences in intraneuronal and extraneuronal lipofuscin accumulation with age in the brain of a nonhuman primate (Macaca mulatta), J. Gerontol. 29:366–381.PubMedGoogle Scholar
  6. Brizzee, K. R., Ordy, J. M, Hansche, J., and Kaack, B., 1976, Quantitative assessment of changes in neuron and glial cell packing density and lipofuscin accumulation with age in the cerebral cortex of a nonhuman primate (Mucaca mulatta), in: Neurobiology of Aging (R. D. Terry and S. Gershon, eds.), Vol. 3, pp. 229–244, Raven Press, New York.Google Scholar
  7. Brody, H., 1955, Organization of the cerebral cortex. III. A study of aging in the human cerebral cortex, J. Comp. Neurol. 102:511–516.PubMedGoogle Scholar
  8. Bryan, J., 1971, Vinblastine and microtubules. I. Induction and isolation of crystals from sea urchin oocytes, Exp. Cell Res. 66:129–136.PubMedGoogle Scholar
  9. Buetow, D. E., 1971, Neuronal aging, in: Cellular and Molecular Renewal in the Mammalian Body (I. L. Cameron and J. D. Thrasher, eds.), pp. 87–106, Academic Press, New York.Google Scholar
  10. Choo, Q. L., and Bray, D., 1978, Two forms of neuronal actin, J. Neurochem. 31:217–224.PubMedGoogle Scholar
  11. Chou, S. M., and Martin, J. D., 1971, Kuru-plaques in a case of Creutzfeldt-Jakob disease, Acta Neuropathol. 17:150–155.PubMedGoogle Scholar
  12. Crapper, D. R., Quittkat, S., and DeBoni, U., 1979, Altered chromatin conformation in Alzheimer’s disease, Brain 102:483–495.PubMedGoogle Scholar
  13. Czosnek, H., and Soifer, D., 1980, Comparison of the proteins of 10 nm filaments from rabbit sciatic nerve and spinal cord by electrophoresis in two dimensions, FEBS Lett. 117:175–178.PubMedGoogle Scholar
  14. Czosnek, H., Soifer, D., and Wisniewski, H. M., 1980, Studies on the biosynthesis of neurofilament proteins, J. Cell Biol. 85:726–734.PubMedGoogle Scholar
  15. Czosnek, H., Soifer, D., Mack, K., and Wisniewski, H. M., 1981, Similarity of neurofilament proteins from different parts of the rabbit nervous system, Brain Res. 216:387–398.PubMedGoogle Scholar
  16. Dahl, D., and Bignami, A., 1978, Immunochemical cross-reactivity of normal neurofibrils and aluminuminduced neurofibrillary tangles. Immunofluorescence study with antineurofilament serum, Exp. Neurol. 58:74–80.PubMedGoogle Scholar
  17. DeBoni, U., and Crapper, D. R., 1978, Paired helical filaments of the Alzheimer type in cultured neurones, Nature (London) 271:566–568.Google Scholar
  18. DeBoni, U., and Crapper-McLachlan, D. R., 1980, Senile dementia and Alzheimer’s disease, Life Sci. 27:1–14.Google Scholar
  19. Divry, P., 1934, De 1a nature de l’altération fibrillaire d’Alzheimer, J. Belge Neurol. Psychiatr. 34:197–201.Google Scholar
  20. Dziedzic, J. D., Iqbal, K., and Wisniewski, H. M., 1980, Central cholinergic activity in Alzheimer dementia, J. Neuropathol. Exp. Neurol. 39:351.Google Scholar
  21. Erickson, H. P., 1975, The structure and assembly of microtubules, Ann. N.Y. Acad. Sci. 253:60–77.PubMedGoogle Scholar
  22. Farmer, P. M., Wisniewski, H. W., and Terry, R. D., 1976, Origin of dystrophic axons in the gracile nucleus, J. Neuropathol Exp. Neurol. 35:366.Google Scholar
  23. Feit, H., and Barondes, S. H., 1970, Colchicine-binding activity in particulate fractions of mouse brain, J. Neurochem. 17:1355–1364.PubMedGoogle Scholar
  24. Foelix, R. F., and Hauser, M., 1979, Helically twisted filaments in giant neurons of whip spider, J. Cell Biol. 19:303–306.Google Scholar
  25. Fujisawa, K., and Shiraki, H., 1978, Study of axonal dystrophy: Pathology of the neuropil of the gracile and cuneate nuclei, Neuropathol. Appl. Neurobiol. 4:1–20.PubMedGoogle Scholar
  26. Gambetti, P., Valasco, M. E., Dahl, D., Bignami, A., Roessmann, U., and Sindely, S. D., 1980, Alzheimer neurofibrillary tangles: An immunohistochemical study, in: Aging of the Brain and Dementia (L. Amaducci, A. N., Davison, and P. Antuono, eds.), pp. 55–63, Raven Press, New York.Google Scholar
  27. Gaskin, F., and Shelanski, M. L., 1976, Microtubules and intermediate filaments, Essays Biochem. 12:115–146.PubMedGoogle Scholar
  28. Gaskin, F., Cantor, C. R., and Shelanski, M. L., 1975, Biochemical studies on the in vitro assembly and disassembly of microtubules, Ann. N.Y. Acad. Sci. 253:133–146.PubMedGoogle Scholar
  29. Gaskin, F., Kress, Y., Brosnan, C., and Bornstein, M., 1978, Abnormal tubulin aggregates induced by zinc ions in organotypic cultures of nerve tissue, J. Neuropathol. Exp. Neurol. 37:616.Google Scholar
  30. Ghetti, B., 1979, Induction of neurofibrillary degeneration following treatment with maytansine in vivo, Brain Res. 163:9–19.PubMedGoogle Scholar
  31. Ghetti, B., Horoupian, D. S., and Wisniewski, H. M., 1975, Acute and long-term transneuronal response of dendrites of lateral geniculate neurons, in: Advances in Neurology (G. W. Kreutzber, ed.), Vol. 12, pp. 401–424, Raven Press, New York.Google Scholar
  32. Glenner, G. G., 1980, Amyloid deposits and amyloidosis, N. Engl. J. Med. 302:1333–1343.PubMedGoogle Scholar
  33. Glenner, G. G., Keiser, H. R., Balden, H. A., Eanes, E. D., Ram, J. S., Kanfer, J. N., and DeLellis, R. A., 1968, Extracellular assembly of amyloid, J. Histochem. Cytochem. 16:633–644.PubMedGoogle Scholar
  34. Glenner, G. G., Ein, D., Eanes, E. D., Bladen, H. A., Terry, W. D., and Page, D. L., 1971, Creation of “amyloid” fibrils from Bence Jones proteins in vitro, Science 174:712–714.PubMedGoogle Scholar
  35. Glenner, G. G., Ein, D., and Terry, W. D., 1972, The immunoglobulin origin of amyloid, Am. J. Med. 52:141–147.PubMedGoogle Scholar
  36. Glenner, G. G., Eanes, E. D., Balden, H. A., Linke, R. P., and Termine, J. D., 1974, β-pleated sheet fibrils: A comparison of native amyloid with synthetic protein fibrils, J. Histochem. Cytochem. 22:1141–1158.PubMedGoogle Scholar
  37. Grundke-Iqbal, I., Johnson, A. B., Terry, R. D., and Iqbal, K., 1979a, Alzheimer neurofibrillary tangles: Production of antiserum and immunohistological staining, Ann. Neurol. 6:532–537.PubMedGoogle Scholar
  38. Grundke-Iqbal, I., Johnson, A. B., Wisniewski, H. M., Terry, R. D., and Iqbal, K., 1979b, Evidence that Alzheimer neurofibrillary tangles originate from neurotubules, Lancet 1:578–580.PubMedGoogle Scholar
  39. Grundke-Iqbal, I., Iqbal, K., and Wisniewski, H. M, 1981, Immunocytochemical studies on neurofibrillary changes, paper presented at the Satellite Symposium on Physiological and Pathophysiological Aspects of the Aging Brain, July 9–11, Heidelberg.Google Scholar
  40. Hetnarski, B., Wisniewski, H. M., Iqbal, K., Dziedzic, J., and Lajtha, A., 1980, Central cholinergic activity in aluminum induced neurofibrillary degeneration, Ann. Neurol. 7:489–490.PubMedGoogle Scholar
  41. Hirano, A., Malamud, N., Elizen, T. S., and Kurland, L. T., 1966, Amyotrophic lateral sclerosis and Parkinson-dementia complex on Guam, Arch Neurol. 15:35–51.PubMedGoogle Scholar
  42. Hoffman, P. N., and Lasek, R. J., 1975, The slow component of axonal transport: Identification of major structural polypeptides of the axon and their generality among mammalian neurons, J. Cell Biol. 66:351–366.PubMedGoogle Scholar
  43. Inoue, S., 1964, Organization and function of the mitototic spindle, in: Primitive Motile Systems in Cell Biology (R. D. Allen and N. Kamiya, eds.), Academic Press, New York.Google Scholar
  44. Iqbal, K., 1979, Isolated brain cells: A tool to study the normal and pathological brain, in: Progress in Neuropathology (H. Zimmerman, ed.), pp. 125–140, Raven Press, New York.Google Scholar
  45. Iqbal, K., and Tellez-Nagel, I., 1972, Isolation of neurons and glial cells from normal and pathological human brains, Brain Res. 45:296–301.PubMedGoogle Scholar
  46. Iqbal, K., Wisniewski, H. M., Shelanski, M. L., Brostoff, S., Liwnicz, H. B., and Terry, R. D., 1974, Protein changes in senile dementia, Brain Res. 77:337–343.PubMedGoogle Scholar
  47. Iqbal, K., Grundke-Iqbal, I., Johnson, A. B., and Wisniewski, H. M., 1980, Neurofibrous proteins in aging and dementia, in: Aging of the Brain and Dementia (L. Amaducci, A. N. Davison, and P. Antuono, eds.), pp. 39–48, Raven Press, New York.Google Scholar
  48. Iqbal, K., Merz, P., and Wisniewski, H. M., 1981a, Isolation of mammalian CNS neurofilaments by in vitro assembly-disassembly, Tr. Am. Soc. Neurochem. 12:200.Google Scholar
  49. Iqbal, K., Grundke-Iqbal, I., Merz, P. A., and Wisniewski, H. M., 1981b, Alzheimer neurofibrillary tangle: Morphology and biochemistry, paper presented at the Satellite Symposium on Physiological and Pathophysiological Aspects of the Aging Brain, July 9–11, Heidelberg.Google Scholar
  50. Ishii, T., and Haga, S., 1976, Immuno-electron microscopic localisation of immunoglobulins in amyloid fibrils of senile plaques, Acta Neuropathol. 36:243–249.PubMedGoogle Scholar
  51. Ishii, T., Haga, S., and Tokutake, S., 1979, Presence of neurofilament protein in Alzheimer’s neurofibrillary tangles (ANF): An immunofluorescent study, Acta Neuropathol. 48:105–112.PubMedGoogle Scholar
  52. Johnson, A. B., and Blum, N. R., 1970, Nucleoside phosphatase activities associated with the tangles and plaques of Alzheimer’s disease, J. Neuropathol. Exp. Neurol. 29:463–477.PubMedGoogle Scholar
  53. Kidd, M., 1963, Paired helical filaments in electron microscopy in Alzheimer’s disease, Nature (London) 197:192–193.Google Scholar
  54. Kirschner, M. W., Sutel, M., Weingarten, M., and Littman, D., 1975, The role of rings in the assembly of microtubules in vitro, Ann. N.Y. Acad. Sci. 253:90–106.PubMedGoogle Scholar
  55. Klatzo, I., Gajdusek, D. C., and Zigas, V., 1959, Pathology of kuru, Lab. Invest. 8:799–847.PubMedGoogle Scholar
  56. Klatzo, I., Wisniewski, H. M., and Streicker, E., 1965, Experimental production of neurofibrillary degeneration. I. Light microscopic observations, J. Neuropathol. Exp. Neurol. 24:187–199.PubMedGoogle Scholar
  57. Kreutzberg, G., 1969, Neuronal dynamics and axonal flow. IV. Blockage of intra-axonal enzyme transport by colchicine, Proc. Natl. Acad. Sci. USA 62:722–728.PubMedGoogle Scholar
  58. Lampert, P., 1967, A comparative electron microscopic study of reactive, degenerating, regenerating and dystrophic axons, J. Neuropathol. Exp. Neurol. 26:345–368.PubMedGoogle Scholar
  59. Lampert, P., Blumberg, J. M., and Pentschew, A., 1964, An electron microscopic study of dystrophic axons in gracile and cuneate nuclei of Vit. E-deficient rats, J. Neuropathol. Exp. Neurol. 27:60–77.Google Scholar
  60. Malik, M. N., Fenko, M., and Wisniewski, H. M., 1981a, Observations on the possible existence of myosin isoenzymes in the brain, Tr. Am. Soc. Neurochem. 12:107.Google Scholar
  61. Malik, M. N., Myers, L. A., Scotto, L., Iqbal, K., and Wisniewski, H. M., 1981b, Calcium activated proteolysis of fibrous proteins in central nervous system, Tr. Am. Soc. Neurochem. 12:108.Google Scholar
  62. Mann, D. M. A., and Sinclair, K. G. A., 1978, The quantitative assessment of lipofuscin pigment, cytoplasmic RNA and nucleolar volume in senile dementia, Neuropathol. Appl. Neurobiol. 4:129–135.PubMedGoogle Scholar
  63. Mann, D. M. A., and Yates, P. O., 1974, Lipoprotein pigments—Their relationship to aging in the human nervous system, Brain 97:481–488.PubMedGoogle Scholar
  64. Margolis, R. L., and Wilson, L., 1977a, Opposite end assembly and disassembly of microtubules at steady state in vitro, J. Cell Biol. 75:272–276.Google Scholar
  65. Margolis, R. L., and Wilson, L., 1977b, Addition of colchicine-tubulin complex to microtubule ends. Proc. Natl. Acad. Sci. USA 74:3466–3470.PubMedGoogle Scholar
  66. Moon, H. M., Wisniewski, T., Merz, P., DeMartini, J., and Wisniewski, H. M., 1981, Partial purification of neurofilament subunits from bovine brains and studies on neurofilament assembly. J. Cell Biol. 89:560–567.PubMedGoogle Scholar
  67. Murphy, D. B., and Borisy, G. G., 1975, Association of high molecular weight proteins with microtubules, Proc. Natl. Acad. Sci. USA 72:2696–2700.PubMedGoogle Scholar
  68. Murphy, D. B., Vallee, R. B., and Borisy, G. G., 1977, Identity and polymerization-stimulatory activity of the nontubulin proteins associated with microtubules, Biochemistry 16:2598–2605.PubMedGoogle Scholar
  69. Olmsted, J. B., and Borisy, G. G., 1973, Microtubules, Annu. Rev. Biochem. 42:507–540.PubMedGoogle Scholar
  70. Perry, E. K., Perry, R. H., Blessed, G., and Tomlinson, B. E., 1977, Necropsy evidence of central cholinergic deficits in senile dementia, Lancet 1:189.PubMedGoogle Scholar
  71. Powers, J. M., and Spicer, S. S., 1977, Histochemical similarity of senile plaque amyloid to apudamyloid, Virchows Arch. A Pathol. Anat. Histol. 376:107–115.PubMedGoogle Scholar
  72. Salmon, E. D., 1975a, Pressure-induced depolymerization of spindle microtubules. II. Thermodynamics of in vivo spindle assembly, J. Cell Biol. 66:114–127.PubMedGoogle Scholar
  73. Salmon, E. D., 1975b, Spindle microtubules: Thermodynamics of in vivo assembly, Ann. N.Y. Acad. Sci. 253:383–406.PubMedGoogle Scholar
  74. Schaumburg, H. H., Wisniewski, H. M., and Spencer, P. S., 1974, Ultrastructural studies of the dying-back process. I. Acrylamide intoxication, J. Neuropathol. Exp. Neurol. 33:260–284.PubMedGoogle Scholar
  75. Scheibel, M. E., and Scheibel, A. B., 1976, Structural changes in the aging brain, in: Clinical, Morphological and Neurochemical Aspects in the Aging Central Nervous System (H. Brody, D. Harmon, and J. M. Ordy, eds.), Vol. 1, pp. 11–37, Raven Press, New York.Google Scholar
  76. Schmitt, F. O., 1968, The molecular biology of neuronal fibrous proteins, Neurosci. Res. Program Bull. 6:119–144.Google Scholar
  77. Schwartz, P., 1970, Amyloidosis: Cause and Manifestations of Senile Deterioration, Thomas, Springfield, Ill.Google Scholar
  78. Selkoe, D. J., Liem, K. H., Yen, S. H., and Shelanski, M. L., 1979, Biochemical and immunological characterization of neurofilaments in experimental neurofibrillary degeneration induced by aluminum, Brain Res. 163:235–252.PubMedGoogle Scholar
  79. Shibayama, H., and Kitoh, J., 1978, Electron microscopic structure of Alzheimer’s neurofibrillary changes in a case of atypical seile dementia, Acta Neuropathol. 41:229–234.PubMedGoogle Scholar
  80. Soifer, D., and Czosnek, H., 1980, The possible origin of neuronal plasma membrane tubulin, in: Microtubules and Microtubule Inhibitors (M. De Brabander and J. De May, eds.), pp. 429–447, Elsevier/ North-Holland, Amsterdam.Google Scholar
  81. Soifer, D., Iqbal, K., Czosnek, H., DeMartini, J., Sturman, J. A., and Wisniewski, H. M., 1981, The loss of neuron spécific proteins during the course of Wallerian degeneration of optic and sciatic nerve, J. Neurosci., in press.Google Scholar
  82. Spencer, P. S., and Schaumberg, H. H., 1974, A review of acrylamide neurotoxicity. Part II. Experimental animal neurotoxicity and pathologic mechanisms, Can. J. Neurol. Sci. 1:152–169.PubMedGoogle Scholar
  83. Spencer, P. S., and Schaumberg, H. H., 1977, Central peripheral distal axonopathy. The pathology of dying-back polyneuropathies, Prog. Neuropathol. 3:253–295.Google Scholar
  84. Tellez-Nagel, I., and Wisniewski, H. M., 1973, Ultrastructure of neurofibrillary tangles in Steel-Richardson-Olszewski syndrome, Arch. Neurol. 29:324–327.PubMedGoogle Scholar
  85. Terry, R. D., 1978, Senile dementia, Fed. Proc. 37:2837–2840.PubMedGoogle Scholar
  86. Terry, R. D., and Davies, P., 1980, Dementia of the Alzheimer type, Annu. Rev. Neurosci. 3:77–95.PubMedGoogle Scholar
  87. Terry, R. D., and Wisniewski, H. M., 1970, The ultrastructure of the neurofibrillary tangle and the senile plaque, in: Alzheimer’s Disease and Related Conditions (G. E. W. Wolstenholme and M. O’Connor, eds.), pp. 145–168, Churchill, London.Google Scholar
  88. Tomlinson, B. E., 1979, The ageing brain, in: Recent Advances in Neuropathology (W. T. Smith and J. B. Cavanaugh, eds.), Vol. 1, pp. 129–159, Churchill, London.Google Scholar
  89. Tomlinson, B. E., Blessed, G., and Roth, M., 1970, Observations on the brains of demented old people, J. Neurol. Sci. 11:205–242.PubMedGoogle Scholar
  90. Volk, B., 1980, Paired helical filaments in rat spinal ganglia following chronic alcohol administration: An electron microscopic investigation, Neuropathol. Appl. Neurobiol. 6:143–153.PubMedGoogle Scholar
  91. Weingarten, M. D., Lockwood, A. H., Hwo, S. Y., and Kirschner, M., 1975, A protein factor essential for microtubule assembly, Proc. Natl. Acad. Sci. USA 72:1858–1862.PubMedGoogle Scholar
  92. Wilson, L., 1975, Microtubules as drug receptors: Pharmacological properties of microtubule protein, Ann. N.Y. Acad. Sci. 253:213–231.PubMedGoogle Scholar
  93. Wisniewski, H. M., 1978, Possible viral etiology of neurofibrillary changes and neuritic plaques. in: Alzheimer’s Disease: Senile Dementia and Related Disorders (R. Katzman, R. D. Terry, and K. L. Bick, eds.), pp. 555–558, Raven Press, New York.Google Scholar
  94. Wisniewski, H. M., and Iqbal, K., 1980, Aging of the brain and dementia, Trends Neurosci. 3:226–228.Google Scholar
  95. Wisniewski, H. M., and Soifer, D., 1980, Neurofibrillary pathology: Current status and research perspectives, Mech. Ageing Dev. 9:119–142.Google Scholar
  96. Wisniewski, H. M., and Terry, R. D., 1970, An experimental approach to the morphogenesis of neurofibrillary degeneration and the argyrophilic plaque, in: Alzheimer’s Disease and Related Conditions (G. E. W. Wolstenholme and M. O’Connor, eds.), pp. 223–243, Churchill, London.Google Scholar
  97. Wisniewski, H. M., and Terry, R. D., 1973, Reexamination of the pathogenesis of the senile plaque, in: Progress in Neuropathology (H. M. Zimmerman, ed.), Vol. II, pp. 1–26, Grune & Stratton, New York.Google Scholar
  98. Wisniewski, H. M, and Terry, R. D., 1976, Neuropathology of the aging brain, in: Neurobiology of Aging (R. D. Terry and S. Gershon, eds.), pp. 265–280, Raven Press, New York.Google Scholar
  99. Wisniewski, H. M., Narkiewicz, O., and Wisniewski, K., 1967, Topography and dynamics of neurofibrillar degeneration in aluminum encephalopathy, Acta Neuropathol. 9:127–133.PubMedGoogle Scholar
  100. Wisniewski, H. M., Shelanski, M. L., and Terry, R. D., 1968, Effects of mitotic spindle inhibitors on neurotubules and neurofilaments in anterior horn cells, J. Cell Biol. 38:224–229.PubMedGoogle Scholar
  101. Wisniewski, H. M., Johnson, A. B., Raine, C. S., Kay, W. J., and Terry, R. D., 1970, Senile plaques and cerebral amyloidosis in aged dogs, Lab. Invest. 23:287–296.PubMedGoogle Scholar
  102. Wisniewski, H. M., Ghetti, B., and Terry, R. D., 1973, Neuritic (senile) plaques and filamentous changes in aged rhesus monkeys, J. NeuropathoL Exp. Neurol. 32:566–584.PubMedGoogle Scholar
  103. Wisniewski, H. M., Bruce, M. E., and Fraser, H., 1975, Infectious aetiology of neuritic (senile) plaques in mice, Science 190:1108–1110.PubMedGoogle Scholar
  104. Wisniewski, H. M., Narang, H. K., and Terry, R. D., 1976, Neurofibrillary tangles of paired helical filaments, J. Neurol. Sci. 27:173–181.PubMedGoogle Scholar
  105. Wisniewski, H. M., Korthals, J. K., Kopeloff, L. M., Ferszt, R., Chusid, J. C., and Terry, R. D., 1977, Neurotoxicity of aluminum, in: Neurotoxicology (L. Roizin and N. Grčvić, eds.), pp. 313–315, Raven Press, New York.Google Scholar
  106. Wisniewski, H. M., Sturman, J. A., and Shek, J. W., 1980, Aluminum chloride induced neurofibrillary changes in the developing rabbit: A chronic animal model, Ann. Neurol. 8:479–490.PubMedGoogle Scholar
  107. Wisniewski, H. M., Moretz, R. C., Lossinsky, A. S., and Dickinson, A. G., 1981, Evidence for induction of localized amyloid deposits and neuritic plaques by an infectious agent, Ann. Neurol., in press.Google Scholar
  108. Wuerker, R. B., 1970, Neurofilaments and glial filaments, Tissue Cell 2:1–9.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Henryk M. Wisniewski
    • 1
  • Raymond S. Sinatra
    • 1
  • Khalid Iqbal
    • 1
  • Inge Grundke-Iqbal
    • 1
  1. 1.Department of Pathological NeurobiologyNew York State Institute for Basic Research in Mental RetardationStaten IslandUSA

Personalised recommendations