Advertisement

Light Scattering in Electric Fields

  • B. R. Jennings
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 64)

Abstract

Measurements of the intensity of light scattered from molecular solutions (and particulate suspensions) lead to information about the molecular weight and radius of gyration of the solute. When an electric field is applied the intensity changes owing to the resulting orientation, deformation and alignment of the solute molecules. Measurements of these changes enable the permanent and induced dipole moments and rotary relaxation times of the molecules to be evaluated. The most useful equations for the effects are reviewed for rods, discs and flexible polar chains. The experimental harnessing of the theoretical predictions is described. Representative results are given which illustrate not only the evaluation of the molecular physical parameters but also show how such a wealth of parameters obtained in a single experimental procedure can, in favorable circumstances, enable the characteristics of complex structures and aggregates to be estimated.

Keywords

Dipole Moment Scattered Intensity Silver Iodide Poly Alanine Induce Dipole Moment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Gans, Annln. Phys. 62: 331 (1919).Google Scholar
  2. 2.
    J. Cabannes, ‘La Diffusion Moleculaire de la Lumiére’, Presses Universitaires, Paris (1929).Google Scholar
  3. 3.
    B. H. Zimm, J. Chem. Phys. 16: 1099 (1948).ADSCrossRefGoogle Scholar
  4. 4.
    S. Kielich, Acta. Phys. Polon. A37: 447 (1970).Google Scholar
  5. 5.
    C. Wippler, J. Chim. Phys. 53: 316 (1956).Google Scholar
  6. 6.
    B. Chu, ‘Laser Light Scattering’, Academic Press, New York (1974).Google Scholar
  7. 7.
    B. R. Ware and W.H. Flygare, Chem. Phys. Lett. 12: 81 (1971).ADSCrossRefGoogle Scholar
  8. 8.
    J. F. Schweitzer and B. R. Jennings, J. Phys. D. (Appl Phys.) 5: 297 (1972).ADSCrossRefGoogle Scholar
  9. 9.
    H. Plummer and B. R. Jennings, J. Chem. Phys. 50:1033 (1969). A minor error in the original equation has been pointed out on p. 290 of ref. 10.Google Scholar
  10. 10.
    B. R. Jennings, Ch. 8 in ‘Molecular Electro-Optics’, Vol. 1, ( C. T.O’Konski-Ed.), Dekker, New York (1976).Google Scholar
  11. 11.
    T. J. Herbert, J. Coll. Int. Sci. 69: 122 (1979).Google Scholar
  12. 12.
    H. Benoit, Ann. Phys. (Paris) 6: 561 (1951).Google Scholar
  13. 13.
    W. Burchard, Makromol. Chem. 67: 182 (1963).CrossRefGoogle Scholar
  14. 14.
    H. Plummer and B. R. Jennings, Europ. Polymer J. 6: 171 (1970).CrossRefGoogle Scholar
  15. 15.
    H. J. Coles, B. R. Jennings and V. J. Morris, Phys. Med. Biol. 20: 225 (1975).CrossRefGoogle Scholar
  16. 16.
    B. R. Jennings and V. J. Morris, J. Coll. Int. Sci. 50: 352 (1975).CrossRefGoogle Scholar
  17. 17.
    V. J. Morris and B. R. Jennings, Biochim. Biophys. Acta. 497: 253 (1977).Google Scholar
  18. 18.
    A. Scheludko and S. P. Stoylov, Kolloid Z.u.Z. Polymere, 199: 36 (1964).CrossRefGoogle Scholar
  19. 19.
    S. P. Stoylov, Coll. Czech. Chem. Comm. 31: 2866 (1966).Google Scholar
  20. 20.
    S. P. Stoylov, S. Sokerov, I. Petkanchin, and N. Ibroshev, Dokl. Akad. Nauk. SSSR 180: 1165 (1968).Google Scholar
  21. 21.
    S. P. Stoylov, Izv. Inst. Fizkhim. 6: 79 (1967).Google Scholar
  22. 22.
    A. Peterlin and H. A. Stuart, Handbuch und Jahrbuch der Chemischen Physik. 8:Section 1 b (1943).Google Scholar
  23. 23.
    B. R. Jennings, B. L. Brown and H. Plummer, J. Coll. Int. Sci. 32: 606 (1970).CrossRefGoogle Scholar
  24. 24.
    R. E. Grimm, ‘Clay Mineralogy’, McGraw-Hill, New York (1953).Google Scholar
  25. 25.
    J. F. Schweitzer and B. R. Jennings, J. Coll. Int. Sci., 37: 443 (1971).CrossRefGoogle Scholar
  26. 26.
    C. Wippler and H. Benoit, Makromol. Chem. 13: 7 (1954).CrossRefGoogle Scholar
  27. 27.
    A. Isihara, R. Koyama, N. Yamada and A. Nishioka, J. Polymer Sci. 17: 341 (1955).ADSCrossRefGoogle Scholar
  28. 28.
    M. L. Wallach and H. Benoit, J. Polymer Sci. A2, 4: 491 (1966).CrossRefGoogle Scholar
  29. 29.
    C. Wippler, J. Polymer Sci. 23: 199 (1957).CrossRefGoogle Scholar
  30. 30.
    W. H. Stockmayer and M. Baur, J. Amer. Chem. Soc. 86: 3485 (1964).CrossRefGoogle Scholar
  31. 31.
    B. R. Jennings, Brit. Polymer J. 1: 70 (1969).CrossRefGoogle Scholar
  32. 32.
    H. J. Plummer and B. R. Jennings, Brit. J. Appl. Phys. 1: 1753 (1968).Google Scholar
  33. 33.
    H. G. Jerrard, J. Chem. Phys. 42: 511 (1965).ADSCrossRefGoogle Scholar
  34. 34.
    B. R. Jennings and M. Bhanot, Clay Minerals 12: 217 (1977).CrossRefGoogle Scholar
  35. 35.
    B. R. Jennings and H. Plummer, J. Coll. Int. Sci. 27: 377 (1968).CrossRefGoogle Scholar
  36. 36.
    B. L. Brown, B. R. Jennings and H. Plummer, J. Appl. Optics 8: 2019 (1969).ADSCrossRefGoogle Scholar
  37. 37.
    M. Bhanot and B. R. Jennings, J. Coll. Int. Sci. 56: 92 (1976).CrossRefGoogle Scholar
  38. 38.
    B. R. Jennings and J. F. Schweitzer, Europ. Polymer J. 10: 459 (1974).CrossRefGoogle Scholar
  39. 39.
    M. L. Wallach and H. Benoit, J. Polymer Sci. 57: 41 (1962).ADSCrossRefGoogle Scholar
  40. 40.
    B. R. Jennings and H. G. Jerrard, J. Phys. Chem. 69: 2817 (1965)CrossRefGoogle Scholar
  41. 41.
    C. Picot, C. Hornick, G. Weill and H. Benoit, J. Polymer Sci. (C) 30: 349 (1970).Google Scholar
  42. 42.
    C. Picot and G. Weill, J. Polymer Sci. (Polymer Physics) 12: 1733 (1974).ADSCrossRefGoogle Scholar
  43. 43.
    K. Rosenheck, P. Lindner and I. Pecht, J. Membrane Biol. 20: 1 (1975).CrossRefGoogle Scholar
  44. 44.
    A. Scheludko and S. P. Stoylov, Biopolymers 5: 723 (1967).CrossRefGoogle Scholar
  45. 45.
    B. R. Jennings and H. Plummer, Biopolymers 9: 1361 (1970).CrossRefGoogle Scholar
  46. 46.
    C. Hornick and G. Weill, Biopolymers 10: 2345 (1971).CrossRefGoogle Scholar
  47. 47.
    B. R. Jennings and H. G. Jerrard, J. Chem. Phys. 44: 1291 (1966)ADSCrossRefGoogle Scholar
  48. 48.
    S. P. Stoylov, J. Polymer Sci. (C) 16: 2435 (1967).Google Scholar
  49. 49.
    S. P. Stoylov in ‘Chemistry, Physics and Application of Surface Active Substances;, p. 172, Gordon and Breach, New York (1967).Google Scholar
  50. 50.
    S. P. Stoylov and S. Sokerov, J. Coll. Int. Sci. 27: 542 (1968).CrossRefGoogle Scholar
  51. 51.
    B. R. Jennings and J. F. Schweitzer, Polymer 13: 164 (1972).CrossRefGoogle Scholar
  52. 52.
    H. Plummer, Ph.D. thesis, London University (1969).Google Scholar
  53. 53.
    V. J. Morris and B. R. Jennings, J. Chem. Soc. (Faraday II ), 71: 1948 (1975).CrossRefGoogle Scholar
  54. 54.
    V. J. Morris, B. R. Jennings, N. J. Pearson and F. O’Grady, Microbios 17: 133 (1976).Google Scholar
  55. 55.
    V. J. Morris and B. R. Jennings, J. Coll. Int. Sci. 55: 143 (1976)CrossRefGoogle Scholar
  56. 56.
    J. Brownsey, B. R. Jennings and V. J. Morris, J. Coll. Int. Sci. 63:597 (1978).CrossRefGoogle Scholar
  57. 57.
    R. Subramanya and M. R. Rao, Proc. Ind. Acad. Sci. 29A: 442 (1949).Google Scholar
  58. 58.
    A. Scheludko and S. P. Stoylov, Izv. Inst. Fiz. Chim. 2: 191 (1962).Google Scholar
  59. 59.
    S. P. Stoylov and I. B. Petkanchin, Comp. Rend. Bulg. 24: 487 (1971).Google Scholar
  60. 60.
    S. P. Stoylov and I. Petkanchin, J. Coll. Int. Sci. 40: 159 (1972).CrossRefGoogle Scholar
  61. 61.
    R. S. Subrahmanya, K. S. Doss. and B. S. Rao, Proc. Ind. Acad. Sci. 19: 405 (1944).Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • B. R. Jennings
    • 1
  1. 1.Electro-Optics Group, Physics DepartmentBrunel UniversityUxbridgeUK

Personalised recommendations