Electric Birefringence Dynamics

  • Sonja Krause
  • Chester T. O’Konski
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 64)

Abstract

The rate at which macromolecules in a solution orient under the influence of an applied electric field determines the time dependence of the optical birefringence. It is well known from studies of dielectric dispersion and nuclear magnetic resonance in ordinary liquids that molecular reorientation processes of small molecules normally occur with lifetimes of 10−11 to 10−9 sec. Longer relaxation times are encountered with macromolecules in solution and the direct measurement of these relaxation times through electro-optic effects is now an important method for studying the sizes and shapes of macromolecules.

Keywords

Anisotropy Torque Radium Electrophoresis Bentonite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Peterlin and H. A. Stuart, Z. Physik, 112: 129–147 (1939).ADSCrossRefGoogle Scholar
  2. 2.
    A. Peterlin, and H. A. Stuart, Hand-und Jahrbuch der Chemischen Physik, Vol. 8, Part 1B, in: “Akademische Verlagsges.,” A. Eucken and K. L. Wolf (eds.), Leipzig (1943), pp. 1–115.Google Scholar
  3. 3.
    C. T. O’Konski, J. Phys. Chem., 64: 605–619 (1960).CrossRefGoogle Scholar
  4. 4.
    J. A. Osborne, Phys. Rev., 67: 351 (1945).ADSCrossRefGoogle Scholar
  5. 5.
    H. C. van de Hulst, “Light Scattering by Small Particles,” Wiley, New York (1957).Google Scholar
  6. 6.
    C. T. O’Konski, and L. S. Shepard, Appendix B in: “Molecular Electro-Optics, Part 1, Theory and Methods,” C. T. O’Konski (ed.), Marcel Dekker, Inc., New York (1976).Google Scholar
  7. 7.
    H. Benoit, Ann. Phys., 6: 561–609 (1951).Google Scholar
  8. 8.
    C. T. O’Konski, and B. H. Zimm, Science, 3: 113–116 (1950).CrossRefGoogle Scholar
  9. 9.
    F. Perrin, J. Phys. Radium, 5: 497 (1934).MATHCrossRefGoogle Scholar
  10. 10.
    N. A. Tolstoi, and P. P. Feofilov, Dokl. Akad. Nauk SSSR, 66: 617–620 (1949).Google Scholar
  11. 11.
    H. Benoit, Compt. Rend., 228: 1716–1718 (1949).Google Scholar
  12. 12.
    H. Benoit, Compt. Rend., 229: 30–32 (1949).Google Scholar
  13. 13.
    J. Errera, J. Th. G. Overbeek, and H. Sack, J. Chem. Phys., 32: 681–704 (1935).Google Scholar
  14. 14.
    C. E. Marshall, Trans. Faraday Soc., 26: 173–189 (1930).CrossRefGoogle Scholar
  15. 15.
    M. A. Lauffer, J. Am. Chem. Soc., 61: 2412–2416 (1939).CrossRefGoogle Scholar
  16. 16.
    H. Mueller, Phys. Rev., 55: 508 (1939).ADSCrossRefGoogle Scholar
  17. 17.
    H. Mueller, Phys. Rev., 55: 792 (1939).ADSCrossRefGoogle Scholar
  18. 18.
    H. Mueller, and B. W. Sakman, Phys. Rev., 56: 615–616 (1939).ADSCrossRefGoogle Scholar
  19. 19.
    H. Mueller, and B. W. Sakman, J. Opt. Soc. Am., 32: 309–317 (1942).ADSCrossRefGoogle Scholar
  20. 20.
    F. J. Norton, Phys. Rev., 55: 668–669 (1939).ADSCrossRefGoogle Scholar
  21. 21.
    W. Heller, Rev. Mod. Phys., 14: 390–409 (1942).ADSCrossRefGoogle Scholar
  22. 22.
    C. T. O’Konski, and A. J. Haltner, J. Am. Chem. Soc., 79: 5634 (1957).CrossRefGoogle Scholar
  23. 23.
    I. Tinoco, Jr., and K. Yamaoka, J. Phys. Chem., 63: 423–427 (1959).CrossRefGoogle Scholar
  24. 24.
    M. Matsumoto, H. Watanabe, and K. Yoshioka, J. Phys. Chem., 74: 2182–2188 (1970).CrossRefGoogle Scholar
  25. 25.
    A. J. Haltner, Ph.D. Thesis, Univ. of California, Berkeley (1955), 108 pp.Google Scholar
  26. 26.
    C. T. O’Konski, and A. J. Haltner, J. Am. Chem. Soc., 78: 36043610 (1956).Google Scholar
  27. 27.
    S. Broersma, J. Chem. Phys., 32: 1626–1631 (1960).ADSCrossRefGoogle Scholar
  28. 28.
    R. C. Williams, and R. L. Steere, J. Am. Chem. Soc., 73: 2075 (1951).Google Scholar
  29. 29.
    A. J. Haltner, and B. H. Zimm, Nature, 184: 265 (1959).ADSCrossRefGoogle Scholar
  30. 30.
    F. S. Allen, and K. E. Van Holde, Biopolymers, 10: 865 (1971).CrossRefGoogle Scholar
  31. 31.
    C. T. O’Konski, and S. Krause, J. Phys. Chem., 74: 3243 (1970).CrossRefGoogle Scholar
  32. 32.
    C. T. O’Konski, and R. M. Pytkowicz, J. Am. Chem. Soc., 79: 4815 (1957).CrossRefGoogle Scholar
  33. 33.
    C. V. Raman, and S. C. Sirkar, Nature, 121: 794 (1928).ADSCrossRefGoogle Scholar
  34. 34.
    H. Benoit, J. Chim. Phys., 49: 517–521 (1952).Google Scholar
  35. 35.
    G. B. Thurston, and D. I. Bowling, J. Colloid Interface Sci., 30: 34 (1969).CrossRefGoogle Scholar
  36. 36.
    H. Plummer, and B. R. Jennings, J. Chem. Phys., 50: 1033–1034 (1969).ADSCrossRefGoogle Scholar
  37. 37.
    S. P. Stoylov, Adv. Colloid Interface Sci., 3: 45–110 (1971).CrossRefGoogle Scholar
  38. 38.
    S. J. Jakabhazy, and S. W. Fleming, Biopolymers, 4: 793–813 (1966).CrossRefGoogle Scholar
  39. 39.
    N. A. Tolstoi, A. A. Spartakov, and A. A. Trusov, Kolloid Zh., 28: 735–741 (1966).Google Scholar
  40. 40.
    B. R. Jennings, and B. L. Brown, Eur. Polymer J., 7: 805 (1971).CrossRefGoogle Scholar
  41. 41.
    M. J. Shah, D. C. Thompson, and C. M. Hart, J. Phys. Chem., 67: 1170 (1963).CrossRefGoogle Scholar
  42. 42.
    V. N. Tsvetkov, Yu. V. Mitin, V. R. Glushenkora, A. Ye. Grischenko, N. N. Boitsova, and S. Ya. Lyubina, Vysokomolekul. Soedin., 5: 453 (1963).Google Scholar
  43. 43.
    C. T. O’Konski, and J. B. Applequist, Nature, 178: 1464–1465 (1956).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Sonja Krause
    • 1
  • Chester T. O’Konski
    • 2
  1. 1.Department of ChemistryRensselaer Polytechnic InstituteTroyUSA
  2. 2.Department of ChemistryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations