Advertisement

Theory of the Kerr Constant

  • Chester T. O’Konski
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 64)

Abstract

Kerr effect data on gases and liquids provided important results in studies of molecular structure as mentioned in the Chapter concerning the history of molecular electro-optics (the first Chapter of this book). The development of theories of the Kerr constant of gases, liquids, solutions and suspensions was very closely involved with that of the theories of the dielectric constant. Here, however, we describe highlights of theoretical developments of only the Kerr constant. In this, as in other areas of physical chemistry, there has been a strong interplay between experimental studies guided by theoretical concepts and the selection of physical models with their mathematical treatments. The theory of the Kerr constant is relatively complete and rigorous for dilute gases, where the complications of molecular interactions are absent (1). It is also in quite a good state for most liquids and dilute solutions of solutes in nonpolar solvents, but not so complete for polar molecules -- especially hydrogen bonding ones, which interact strongly in liquids.

Keywords

Dipole Moment Tobacco Mosaic Virus Surface Conductivity Kerr Effect Flexible Polymer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Born, Ann. Physik., 55:177–240 (1918).ADSCrossRefGoogle Scholar
  2. 2.
    R. Jernigan, chapter in this volume.Google Scholar
  3. 3.
    P. Debye, and E. Marx (eds.), “Handbuch der Radiologie,” Vol. 6, Leipzig (1925), pp. 597–790.Google Scholar
  4. 4.
    P. Debye, and H. Sack, in: E. Marx (ed.), “Handbuch der Radiologie,” Vol. 6, Leipzig (1934).Google Scholar
  5. 5.
    J. R. Partington, “An Advanced Treatise on Physical Chemistry,” Vol. 4, Physico-Chemical Optics, Longmans, Green and Co. Ltd., London and Toronto (1953), p. 280.Google Scholar
  6. 6.
    A. D. Buckingham, Electric Birefringence in Gases and Liquids, Chap. 2, in: “Molecular Electro-Optics,” Part 1, Theory and Methods, C. T. O’Konski (ed.), Marcel Dekker, Inc., New York (1976), pp. 27–62.Google Scholar
  7. 7.
    Tae-Kyu Ha, Quantum Theory and Calculation of Electric Polarizability, Chapter 14, in: “Molecular Electro-Optics,” Part 1, Theory and Methods, C. T. O’Konski (ed.), Marcel Dekker, Inc., New York (1976), pp. 471–513.Google Scholar
  8. 7a.
    D. A. Dunmur, D. C. Hunt, and M. E. Jessup, Mol. Phys., 37(3): 713–724 (1979).ADSCrossRefGoogle Scholar
  9. 7b.
    Q. D. Chue, and M. M. Raikhshtat, Dokl. Akad. Nauk SSSR (Phys. Chem.), 217(6):1347–1350 (1974).Google Scholar
  10. 8.
    A. D. Buckingham, and R. E. Raab, J. Chem. Soc., 2341 (1957).Google Scholar
  11. 8a.
    A. D. Buckingham, P. J. Stiles, and G. L. D. Ritchie, Trans. Far. Soc., 67:577 (1971).CrossRefGoogle Scholar
  12. 8b.
    L. Onsager, J. Am. Chem. Soc., 58:1486 (1936).CrossRefGoogle Scholar
  13. 8c.
    R. Patz, and M. T. Raetzsch, Z. Phys. Chem. (Leipzig), 260(4): 769–787Google Scholar
  14. R. Patz, and M. T. Raetzsch, Z. Phys. Chem. (Leipzig), 260(4): 788–794 (1979).Google Scholar
  15. 8d.
    Th. G. Scholte, Physica, 15:437 (1949).ADSCrossRefGoogle Scholar
  16. 8e.
    M. R. Battaglia, Proc. Int. Meet. Soc. Chim. Phys., 31st (1978), pp. 237–250.Google Scholar
  17. 8f.
    W. H. Orttung, and J. A. Meyers, J. Phys. Chem., 67:1911 (1963).CrossRefGoogle Scholar
  18. 8g.
    M. S. Beevers, J. Chem. Soc. Far. Trans. II, 75:679 (1979).CrossRefGoogle Scholar
  19. 8h.
    h. G. Khanarian, Thesis, Ph.D., Univ. of Sydney (1980).Google Scholar
  20. 9a.
    A. Peterlin, Acad. Znanosti Umetnosti, 3:111 (1947).Google Scholar
  21. 9b.
    H. A. Stuart, and A. Peterlin, J. Polymer Sci., 5:551 (1950).CrossRefGoogle Scholar
  22. 9c.
    Y. Y. Gotlib, Zh Tekhn. Fiz., 27:707 (1957).Google Scholar
  23. 9d.
    M. V. Vol’kenshtein, and Y. Y. Gotlib, in: “Configurational Statistics of Polymer Chains,” M. V. Vol’kenshtein (ed.), Interscience Publishers, a Division of John Wiley & Sons, Inc., New York, Chap. 7 (1963).Google Scholar
  24. 9e.
    W. H. Stockmayer, and M. E. Baur, J. Am. Chem. Soc., 86:3485 (1964).CrossRefGoogle Scholar
  25. 9f.
    D. A. Dows, J. Cnem. Phys., 41:2656 (1964).ADSCrossRefGoogle Scholar
  26. 9g.
    K. Nagai, and T. Ishikawa, J. Chem. Phys., 43:4508–4515 (1965)ADSCrossRefGoogle Scholar
  27. K. Nagai, J. Chem. Phys., 51:1091–1101 (1969)ADSCrossRefGoogle Scholar
  28. T. Ishikawa, and K. Nagai, Polymer J., 2:263–273 (1971).CrossRefGoogle Scholar
  29. 9h.
    R. L. Jernigan, and P. J. Flory, J. Chem. Phys., 50:4178 (1969).ADSCrossRefGoogle Scholar
  30. 9i.
    R. L. Jernigan, and D. S. Thompson, Flexible Polymers, Chap. 5, in: “Molecular Electro-Optics,” Part 1, Theory and Methods, C. T. O’Konski (ed.), Marcel Dekker, Inc., New York, pp. 159–206 (1976).Google Scholar
  31. 10.
    P. Langevin, Oeuvres Scientifiques.de Paul Langevin, “Service des publications du CNRS,” Paris, pp. 369–391 (1950)Google Scholar
  32. P. Langevin, Radium 7:249 (1910).CrossRefGoogle Scholar
  33. 11.
    A. Peterlin, and H. A. Stuart, Z. Physik, 112:129–147 (1939).ADSCrossRefGoogle Scholar
  34. 12.
    A. Peterlin, and H. A. Stuart, “Hand- und Jahrbuch der Chemischen Physik,” Vol. 8, Part 1B, A. Eucken and K. L. Wolf (eds.), Akademische Verlagsges., Leipzig, pp. 1–115 (1943).Google Scholar
  35. 13.
    C. T. O’Konski, J. Phys. Chem., 64:605–619 (1960).CrossRefGoogle Scholar
  36. 14.
    J. A. Osborne, Phys. Rev., 67:351 (1945).ADSCrossRefGoogle Scholar
  37. 15.
    H. C. van de Hulst, “Light Scattering by Small Particles,” Wiley, New York (1957).Google Scholar
  38. 16.
    C. T. O’Konski, “Encyclopedia of Polymer Science and Technology,” Vol. 9, Wiley-Interscience, New York, p. 551 (1968).Google Scholar
  39. 17.
    H. Benoit, Ann Phys., 6:561–609 (1951).Google Scholar
  40. 18.
    D. N. Holcomb, and I. Tinoco, Jr., Biopolymers, 3:121–133 (1965).CrossRefGoogle Scholar
  41. 19.
    I. Tinoco, Jr., J. Am. Chem. Soc., 77:4486–4489 (1955).CrossRefGoogle Scholar
  42. 20.
    C. Bergholm, and Y. Björnstahl, Physik. Z., 21:137–141 (1920).Google Scholar
  43. 21.
    Y. Björnstahl, Phil. Mag., 2:701–732 (1926).Google Scholar
  44. 22.
    H. T. Buscher, R. M. McIntyre, and S. Mikuteit, IEEE Trans. Microwave Theory Techniques, 19:950 (1971).Google Scholar
  45. 23.
    G. Mie, Ann. Physik, 25(4):377–445 (1908).ADSzbMATHCrossRefGoogle Scholar
  46. 24.
    C. T. O’Konski, note in preparation.Google Scholar
  47. 25.
    C. T. O’Konski, and F. E. Harris, J. Phys. Chem., 61:1172 (1957).CrossRefGoogle Scholar
  48. 26.
    A. R. von Hippel, “Dielectrics and Waves,” Wiley, London, pp. 228–235 (1954).Google Scholar
  49. 27.
    C. T. O’Konski, and H. C. Thacher, Jr., J. Phys. Chem., 57: 955 (1953).CrossRefGoogle Scholar
  50. 28.
    O. Wiener, Ber. Sächs. Ges. Wiss. (Math. Phys. Klg.), 62:256 (1910).Google Scholar
  51. 29.
    C. T. O’Konski, and B. H. Zimm, Science, 3:113–116 (1950).CrossRefGoogle Scholar
  52. 30.
    C. T. O’Konski, and A. J. Haltner, J. Am. Chem. Soc., 79:5634 (1957).CrossRefGoogle Scholar
  53. 31.
    J. Errera, J. Th. G. Overbeek, and H. Sack, J. Chem. Phys., 32:681–704 (1935).Google Scholar
  54. 32.
    S. A. Rice, and M. Nagasawa, “Polyelectrolyte Solutions: A Theoretical Introduction,” Academic, New York (1961).Google Scholar
  55. 33.
    C. T. O’Konski, J. Chem. Phys., 23:195 (1955).CrossRefGoogle Scholar
  56. 34.
    J. B. Miles, and H. P. Robertson, Phys. Rev., 40:583 (1932).ADSCrossRefGoogle Scholar
  57. 35.
    H. P. Schwan, Adv. Biol. Med. Phys., 5:147 (1957).Google Scholar
  58. 36.
    J. P. McTague, and J. H. Gibbs, J. Chem. Phys., 44:4295–4301 (1966).ADSCrossRefGoogle Scholar
  59. 37.
    J. G. Kirkwood, and J. B. Shumaker, Proc. Nat. Acad. Sci., U.S., 38:855 (1952).ADSCrossRefGoogle Scholar
  60. 38.
    U. Schindewolf, Naturwissenschaften, 40:435 (1953).ADSCrossRefGoogle Scholar
  61. 39.
    U. Schindewolf, Z. Elektrochem., 58:697 (1954).Google Scholar
  62. 40.
    M. Eigen, and G. Schwarz, J. Colloid Sci., 12:181–194 (1957).CrossRefGoogle Scholar
  63. 41.
    A. Katchalsky, S. B. Sachs, A. Raziel, and H. Eisenberg, Trans. Faraday Soc., 65:77 (1969).CrossRefGoogle Scholar
  64. 42.
    G. A. Johnson, and S. M. Neale, J. Polymer Sci., 54:241 (1961).ADSCrossRefGoogle Scholar
  65. 43.
    J. M. Neale, and D. A Weyl, Proc. Roy. Soc. (London), A291: 368 (1966).ADSGoogle Scholar
  66. 44.
    S. Takashima, Adv. Chem. Ser., 63:232–252 (1967).CrossRefGoogle Scholar
  67. 45.
    S. Takashima, Biopolymers, 5:899 (1967).CrossRefGoogle Scholar
  68. 46.
    C. T. O’Konski, N. C. Stellwagen, and M. Shirai, manuscript in preparation.Google Scholar
  69. 47.
    C. T. O’Konski, and S. Krause, J. Phys. Chem., 74:3243 (1970).CrossRefGoogle Scholar
  70. 48.
    G. Schwarz, Z. Physik. Chemie N.F., 19:5/6 (1959).Google Scholar
  71. 49.
    M. Mandel, Mol. Phys., 4:489 (1961)ADSCrossRefGoogle Scholar
  72. F. van der Touw, and M. Mandel, Biophys. Chem., 2:218 (1974).CrossRefGoogle Scholar
  73. 50.
    F. Oosawa, Biopolymers, 9:677–688 (1970).CrossRefGoogle Scholar
  74. 51.
    C. Hornick, and G. Weill, Biopolymers, 10:2345–2358 (1971).CrossRefGoogle Scholar
  75. 52.
    K. Kikuchi, and K. Yoshioka, Biopolymers, 15:583–587 (1976).CrossRefGoogle Scholar
  76. 53.
    C. T. O’Konski, and M. Shirai, in preparation.Google Scholar
  77. 54.
    G. S. Manning, J. Chem. Phys., 51:924, 3249 (1969).Google Scholar
  78. 55.
    G. S. Manning, Biophys. Chem., 9:65 (1978).CrossRefGoogle Scholar
  79. 56.
    E. Charney, K. Yamaoha, and G. S. Manning, Biophys. Chem., 11:167–172 (1980).CrossRefGoogle Scholar
  80. 57.
    E. Charney, Biophys. Chem., 11:157–166 (1980)CrossRefGoogle Scholar
  81. E. Charney and C. H. Lee, Macromolecules, 13:66–88 (1980).ADSCrossRefGoogle Scholar
  82. 58.
    D. Stigter, J. Phys. Chem., 82:1603–1606 (1978).CrossRefGoogle Scholar
  83. 59.
    A. D. MacGillivray, J. Chem. Phys., 56:80, 83 (1972)Google Scholar
  84. A. D. MacGillivray, J. Chem. Phys., 57:4071–4075 (1972).ADSCrossRefGoogle Scholar
  85. 60.
    C. T. O’Konski, and F. E. Harris, J. Phys. Chem., 61:1172 (1957).CrossRefGoogle Scholar
  86. 61.
    A. D. Buckingham, Proc. Roy. Soc. (London), A267:27 (1962).Google Scholar
  87. 62.
    W. H. Orttung, J. Am. Chem. Soc., 87:924 (1965)CrossRefGoogle Scholar
  88. W. H. Orttung, J. Phys. Chem., 73:2908 (1968).CrossRefGoogle Scholar
  89. 63.
    J. C. Powers, Jr., J. Am. Chem. Soc., 88:3679 (1966)CrossRefGoogle Scholar
  90. J. C. Powers, Jr., J. Am. Chem. Soc., 89:1780 (1967).Google Scholar
  91. H. G. Kuball, Z. Naturforsch., 22a:1407 (1967)ADSGoogle Scholar
  92. H. G. Kuball and R. Göb, Z. Physik. Chem. (Frankfurt), 62:237 (1967)CrossRefGoogle Scholar
  93. H. G. Kuball, Z. Naturforsch., 22a:1407 (1967)Google Scholar
  94. H. G. Kuball and R. Göb, Z. Physik. Chem. (Frankfurt), 63:251 (1968)CrossRefGoogle Scholar
  95. H. G. Kuball, and D. Singer, Ber. Bunsenges. Physik. Chem., 73:403 (1969)Google Scholar
  96. H. G. Kuball, W. Galler, R. Göb, and D. Singer, Z. Naturforsch., 24a:1391 (1969).ADSGoogle Scholar
  97. 65.
    C. Houssier, and H-G. Kuball, Biopolymers, 10:2421 (1971).CrossRefGoogle Scholar
  98. 66.
    E. Charney, and R. S. Halford, J. Chem. Phys., 29:221 (1958).ADSCrossRefGoogle Scholar
  99. 67.
    A. E. Lutskii, B. A. Veretenchke, and I. S. Romadanov, Isv. yssh. Uchebn. Zavd., Fiz. 17(9):156–157 (1974).Google Scholar
  100. 68.
    C. T. O’Konski (ed.), “Molecular Electro-Optics,” Part 2, Applications to Biopolymers, Marcel Dekker, New York (1978); (References to proteins and polypeptides in Ch. 17 by K. Yoshioka; to polynucleotides and nucleic acids in Ch. 18 by N. C. Stellwagen.)Google Scholar
  101. 69.
    K. Yoshioka, and C. T. O’Konski, Biopolymers, 4:499–507 (1966).CrossRefGoogle Scholar
  102. 70.
    I. Tinoco, Jr., J. Am. Chem. Soc., 79:4336 (1957).CrossRefGoogle Scholar
  103. 71.
    C. T. O’Konski, K. Yoshioka, and W. H. Orttung, J. Phys. Chem., 63:1558–1565 (1959).CrossRefGoogle Scholar
  104. 72.
    A. Haschemeyer, and I. Tinoco, Jr., Biochemistry, 1:503 (1962).Google Scholar
  105. 73.
    S. Krause, and C. T. O’Konski, Biopolymers, 1:503 (1963).CrossRefGoogle Scholar
  106. 74.
    P. Moser, P. G. Squire, and C. T. O’Konski, J. Phys. Chem., 70:744 (1966).CrossRefGoogle Scholar
  107. 75.
    C. G. LeFevre, R. J. W. LeFevre, and C. M. Parkins, J. Chem. Soc., 1958:1468 (1958).Google Scholar
  108. 76.
    N. C. Stellwagen, Ch. 18, Electro-Optics of Polynucleotides and Nucleic Acids, in: “Molecular, Electro-Optics,” Part 2, Applications to Biopolymers, C. T. O’Konski (ed.), Marcel Dekker, Inc., New York, pp. 645–683 (1976).Google Scholar
  109. 77.
    R. Gans, Ann. Physik, 64:481 (1921).ADSCrossRefGoogle Scholar
  110. 78.
    M. J. Shah, J. Phys. Chem., 67:2215 (1963).CrossRefGoogle Scholar
  111. 79.
    K. Yoshioka, and H. Watanabe, “Physical Principles and Techniques of Protein Chemistry,” Part A, S. J. Leach (ed.), Academic, New York, pp. 335–67 (1969).Google Scholar
  112. 80.
    M. Matsumoto, H. Watanabe, and K. Yoshioka, Sci. Papers Coll. Gen. Educ. Univ. Tokyo, 17:173–202 (1967).Google Scholar
  113. 81.
    D. N. Holcomb, and I. Tinoco, Jr., J. Phys. Chem., 67:2691–2698 (1963).Google Scholar
  114. 82.
    K. Yoshioka, and C. T. O’Konski, J. Polymer Sci., A-2(6):421 (1968).Google Scholar
  115. 83.
    K. Kikuchi, and K. Yoshioka, Rep. Prog. Polymer Phys. Japan, 10:19–22 (1967).Google Scholar
  116. 84.
    M. J. Shah, D. C. Thompson, and C. M. Hart, J. Phys. Chem., 67:1170 (1963).CrossRefGoogle Scholar
  117. 85.
    H. Nakayama, and K. Yoshioka, Nippon Kagaku Zasshi (J. Chem. Soc. Japan), 85:177–182 (1964).CrossRefGoogle Scholar
  118. 86.
    H. Watanabe, K. Yoshioka, and A. Wada, Biopolymers, 2:91–101 (1964).CrossRefGoogle Scholar
  119. 87.
    H. Nakayama, and K. Yoshioka, J. Polymer Sci., A-3:813–825 (1965).Google Scholar
  120. 88.
    M. Matsumoto, H. Watanabe, and K. Yoshioka, J. Phys. Chem., 74:2182–2188 (1970).CrossRefGoogle Scholar
  121. 89.
    M. Matsumoto, H. Watanabe, and K. Yoshioka, Biopolymers, 6:905–915 (1968).CrossRefGoogle Scholar
  122. 90.
    N. C. Stellwagen, Configurations of Sodium Deoxyribonucleate and Sodium Phosphate in Solution, Thesis, University of California, Berkeley (1967).Google Scholar
  123. 91.
    C. T. O’Konski, and N. C. Stellwagen, Biophys. J., 5:607–613 (1965).CrossRefGoogle Scholar
  124. 92.
    C. T. O’Konski, and S. Krause, Ch. 3, Electric Birefringence and Relaxation, in: “Molecular Electro-Optics,” Part 1, Theory and Methods, C. T. O’Konski (ed.), Marcel Dekker, Inc., New York, pp. 63–120 (1976).Google Scholar
  125. 93.
    K. Kikuchi, and K. Yoshioka, Biopolymers, 15:1669–1676 (1976).CrossRefGoogle Scholar
  126. 94.
    G. Schwarz, Ann. N. Y. Acad. Sci., 303:190–197 (1977).ADSCrossRefGoogle Scholar
  127. 95.
    R. D. O’Brien, Problems and Approaches in Noncatalytic Biochemistry, in: “The Receptors,” R. D. O’Brien (ed.), pp. 311–335 (1979).Google Scholar
  128. 96.
    G. Ehrenstein, and H. Lecar, Electrically Gated Ionic Channels in Lipid Bilayers, Q. Rev. Biophys., 10:1–34 (1977).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Chester T. O’Konski
    • 1
  1. 1.Department of ChemistryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations