Advertisement

Investigating Nucleic Acids, Nucleoproteins, Polynucleotides, and their Interactions with Small Ligands by Electro-Optical Methods

  • Claude Houssier
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 64)

Abstract

Nucleic acids and nucleoproteins molecules are particularly suitable for investigation through electro-optical methods: (i) they form relatively rigid polyelectrolytic particles which are sufficiently asymmetric and electrically polarizable to be significantly oriented in an electric field; (ii) they hold planar heterocyclic chromophores (the purine and pyrimidine bases) absorbing in an easily accessible wavelength region (the 260 nm band); (iii) many ligands of biological interest interacting with these molecules are also planar heterocyclic dye rings, absorbing in the visible or near ultraviolet range. These considerations are also applicable to some extent to polynucleotides although some of them usually form less rigid structures.

Keywords

Acridine Orange Pulse Electric Field Transition Moment Orientation Mechanism Oblate Ellipsoid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Hofrichter, and W. A. Eaton, Ann. Rev. Biophys. Bioeng. 5:511 (1976).CrossRefGoogle Scholar
  2. 2.
    B. Norden, Appl. Spectr. Rev. 14:157–248 (1978).ADSCrossRefGoogle Scholar
  3. 3.
    E. Fredericq, and C. Houssier, “Electric Dichroism and Electric Birefringence,” Clarendon Press, Oxford, U.K. (1973).Google Scholar
  4. 4.
    N. C. Stellwagen, in: “Molecular Electro-Optics. Part II. Applications to Biopolymers,” C. T. O’Konski, ed., Marcel Dekker, NY, pp. 645–683 (1978).Google Scholar
  5. 5.
    M. F. Maestre, in: “Molecular Electro-Optics. Part II. Applications to Biopolymers,” C. T. O’Konski, ed., Marcel Dekker, NY, pp. 713–741 (1978).Google Scholar
  6. 6.
    G. Weill, and M. Calvin, Biopolymers 1:401–417 (1963).CrossRefGoogle Scholar
  7. 7.
    C. Houssier, B. Hardy, and E. Fredericq, Biopolymers 13:1141–1160 (1974).Google Scholar
  8. 8.
    R. Rill, Biopolymers 11:1929–1941 (1972).CrossRefGoogle Scholar
  9. 9a.
    R. Rill, and K. E. VanHolde, J. Biol. Chem. 248:1080–1083 (1973).Google Scholar
  10. 9b.
    R. Rill, and K. E. VanHolde, J. Mol. Biol. 83:459–471 (1974).CrossRefGoogle Scholar
  11. 10.
    D. M. Crothers, N. Dattagupta, M. Hogan, L. Klevan, and K. S. Lee, Biochemistry 17:4525–4533 (1978).CrossRefGoogle Scholar
  12. 11.
    M. F. Maestre, and G. Kilkson, Biophys. J. 5:275–287 (1965).CrossRefGoogle Scholar
  13. 12.
    G. Weill, and J. Sturm, Biopolymers 14:2537–2553 (1975).CrossRefGoogle Scholar
  14. 13.
    B. R. Jennings, and P. J. Ridler, Chem. Phys. Letters 45:550555 (1977).Google Scholar
  15. 14.
    P. J. Ridler, and B. R. Jennings, in: “Electro-Optics and Dielectrics of Macromolecules and Colloids,” B. R. Jennings, ed., Plenum Press, NY, pp. 99–107 (1979).Google Scholar
  16. 15.
    P. J. Ridler, and B. R. Jennings, SPIE 164:94–99 (1978).Google Scholar
  17. 16.
    R. W. Wilson, and J. A. Schellman, Biopolymers 16:2143–2165 (1977).CrossRefGoogle Scholar
  18. 17.
    P. R. Callis, and N. Davidson, Biopolymers 8:379–390 (1969).CrossRefGoogle Scholar
  19. 18.
    R. L. Jernigan, and D. S. Thompson, in: “Molecular ElectroOptics. Part I. Theory and Methods,” C. T. O’Konski, ed., Marcel Dekker, NY, pp. 159–206 (1976).Google Scholar
  20. 19.
    H. G. Kuball, Z. Naturforsch. A22:1407–1412 (1967).ADSGoogle Scholar
  21. 20.
    C. Houssier, and H. G. Kuball, Biopolymers 10:2421–2433 (1971).CrossRefGoogle Scholar
  22. 21.
    K. Nishinari, and K. Yoshioka, Kolloid-Z und Z. fur Polymere 235:1189–1192 (1969).CrossRefGoogle Scholar
  23. 22.
    E. W. Small, and I. Isenberg, Biopolymers 16:1907–1928 (1977).CrossRefGoogle Scholar
  24. 23.
    S. H. Koenig, Biopolymers 14:2421–2423 (1975).CrossRefGoogle Scholar
  25. 24.
    A. K. Wright, and M. R. Thompson, Biophys. J. 15:137–141 (1975).CrossRefGoogle Scholar
  26. 25.
    M. R. Thompson, R. C. Williams, and C. H. O’Neal, Biophys. J. 24:264–266 (1978).CrossRefGoogle Scholar
  27. 26.
    S. Broersma, J. Chem. Phys. 32:1626–1631 (1960).ADSCrossRefGoogle Scholar
  28. 27.
    J. Schweitzer, and B. R. Jennings, Biopolymers 12:2439–2441 (1973).CrossRefGoogle Scholar
  29. 28.
    A. R. Foweraker, and B. R. Jennings, Adv. Mol. Relxn. Intn. Processes 8:103–110 (1976).CrossRefGoogle Scholar
  30. 29.
    A. R. Foweraker, V. J. Morris, and B. R. Jennings, in: “Particle Size Analysis,” M. J. Groves, ed., Heyden Publishers, pp. 147–154 (1977).Google Scholar
  31. 30.
    M. M. Judy, and S. R. Bernfeld, in: “Non Linear Systems and Applications,” Academic Press, NY, pp. 577–590 (1977).Google Scholar
  32. 31.
    E. Y. Hawkin, A. R. Foweraker, and B. R. Jennings, Polymer 19:1233–1236 (1978).CrossRefGoogle Scholar
  33. 32.
    V. J. Morris, A. R. Foweraker, and B. R. Jennings, Adv. Mol. Relxn. Intn.Processes 12:201–210 (1978).CrossRefGoogle Scholar
  34. 33.
    B. R. Jennings, Adv. Polym. Sci. 22:61–81 (1977).MathSciNetCrossRefGoogle Scholar
  35. 34.
    I. Tinoco, and K. Yamaoka, J. Phys. Chem. 63:423–427 (1959).CrossRefGoogle Scholar
  36. 35.
    M. Matsumoto, H. Watanabe, and K. Yoshioka, J. Phys. Chem. 74:2182–2188 (1970).CrossRefGoogle Scholar
  37. 36.
    P. Colson, C. Houssier, E. Fredericq, and J. Bertolotto, Polymer 15:396–397 (1974).CrossRefGoogle Scholar
  38. 37.
    C. Houssier, J. Bontemps, X. Emonds-Alt, and E. Fredericq, Ann. N.Y. Acad. Sci. 303:170–189 (1977).ADSCrossRefGoogle Scholar
  39. 38.
    P. Colson, C. Houssier, and E. Fredericq, Biochim. Biophys. Acta 340:244–261 (1974).Google Scholar
  40. 39.
    J. Greve, and M. E. DeHeij, Biopolymers 14:2441–2443 (1975).CrossRefGoogle Scholar
  41. 40a.
    J. C. Bernengo, B. Roux, and D. Herbage, Ber. Bunsenges. Phys. Chem. 80:246–249 (1976).Google Scholar
  42. 40b.
    B. Roux, J. C. Bernengo, C. Marion, and M. Hangs, J. Coll. Interface Sci. 66:421–427 (1978).CrossRefGoogle Scholar
  43. 41.
    D. Ding, R. Rill, and K. E. VanHolde, Biopolymers 11:2109–2124 (1972).CrossRefGoogle Scholar
  44. 42.
    M. Hanss, and J. C. Bernengo, Biopolymers 12:2151–2159 (1973).CrossRefGoogle Scholar
  45. 43.
    F. Van der Touw, and M. Mandel, Biophys. Chem. 2:218–230 (1974).CrossRefGoogle Scholar
  46. 44.
    M. Sakamoto, H. Kanda, H. Reinosuke, and Y. Wada, Biopolymers 15:879–892 (1976).CrossRefGoogle Scholar
  47. 45.
    R. S. Wilkinson, and G. B. Thurston, Biopolymers 15:1555–1572 (1976).CrossRefGoogle Scholar
  48. 46.
    K. Kikuchi, and K. Yoshioka, Biopolymers 15:583–587 (1976).CrossRefGoogle Scholar
  49. 47.
    M. Hogan, N. Dattagupta, and D. M. Crothers, Proc. Natl. Acad. Sci. U.S.A. 75:195–199 (1978).ADSCrossRefGoogle Scholar
  50. 48.
    S. Sokerov, and G. Weill, Biophys. Chem. 10:161–171 (1979).CrossRefGoogle Scholar
  51. 49.
    C. Houssier, Thése d’Agrégation, Université de Liége (1977).Google Scholar
  52. 50.
    K. Yamaoka, and E. Charney, Macromolecules 6:66–76 (1973).ADSCrossRefGoogle Scholar
  53. 51.
    C. Houssier, I. Lasters, S. Muyldermans, and L. Wijns, in preparation (1980).Google Scholar
  54. 52.
    C. Hornick, and G. Weill, Biopolymers 10:2345–2358 (1971).CrossRefGoogle Scholar
  55. 53.
    B. Roux, C. Marion, and J. C. Bernengo, in: “Electro-Optics and Dielectrics of Macromolecules and Colloids,” B. R. Jennings, ed., Plenum Press, NY, pp. 163–173 (1979).CrossRefGoogle Scholar
  56. 54.
    C. Marion, and B. Roux, Nucleic Acids Res. 5:4431–4449 (1978).CrossRefGoogle Scholar
  57. 55.
    L. Klevan, M. Hogan, N. Dattagupta, and D. M. Crothers, Cold Spring Harbor Symp. Quant. Biol. 42:207–214 (1977).CrossRefGoogle Scholar
  58. 56.
    D. M. Crothers, N. Dattagupta, M. Hogan, L. Klevan, and K. S. Lee, Biochemistry 17:4525–4533 (1978).CrossRefGoogle Scholar
  59. 57.
    L. Kievan, N. Dattagupta, M. Hogan, and D. M. Crothers, Biochemistry 17:4533–4540 (1978).CrossRefGoogle Scholar
  60. 58.
    H. M. Wu, N. Dattagupta, M. Hogan, and D. M. Crothers, Biochemistry 18:3960–3965 (1979).CrossRefGoogle Scholar
  61. 59.
    J. Ramstein, C. Houssier, and M. Leng, Biochim. Biophys. Acta 335:54–68 (1974).Google Scholar
  62. 60.
    M. Mandelkern, N. Dattagupta, and D. M. Crothers, in preparation (1980).Google Scholar
  63. 61.
    M. Pollak, and H. A. Glick, Biopolymers 16:1007–1013 (1977).CrossRefGoogle Scholar
  64. 62.
    M. Levitt, Proc. Natl. Acad. Sci. 75:640–644 (1978).ADSCrossRefGoogle Scholar
  65. 63.
    X. Emonds-Alt, C. Houssier, and E. Fredericq, Biophys. Chem. 10:27–39 (1979).CrossRefGoogle Scholar
  66. 64.
    C. Houssier, R. Hacha, M. C. DePauw-Gillet, J. L. Pieczynski, and E. Fredericq, submitted for publication (1980).Google Scholar
  67. 65.
    D. C. Rau, and V. A. Bloomfield, Biopolymers 18:2783–2805 (1979).CrossRefGoogle Scholar
  68. 66.
    E. Charney, and J. B. Milstien, Biopolymers 17:1629–1655 (1978).CrossRefGoogle Scholar
  69. 67.
    J. T. Finch, L. C. Lutter, D. Rhodes, R. S. Brown, B. Rushton, M. Levitt, and A. Klug, Nature 269:29–36 (1977).ADSCrossRefGoogle Scholar
  70. 68.
    C. T. O’Konski, and R. S. Farinato, in: “Electro-Optics and Dielectrics of Macromolecules and Colloids,” B. R. Jennings, ed., Plenum Press, NY, pp. 133–142 (1979).CrossRefGoogle Scholar
  71. 69.
    C. Gatti, C. Houssier, and E. Fredericq, Biochim. Biophys. Acta 407:308–319.Google Scholar
  72. 70.
    H. H. Chen, and E. Charney, Biopolymers in press (1980).Google Scholar
  73. 71.
    E. Charney, and H. H. Chen, in preparation (1980).Google Scholar
  74. 72.
    M. Hogan, N. Dattagupta, and D. M. Crothers, Biochemistry 18:280–288 (1979).CrossRefGoogle Scholar
  75. 73.
    C. T. Chang, S. J. Miller, and J. G. Wetmur, Biochemistry 13:2142–2148 (1974).CrossRefGoogle Scholar
  76. 74.
    R. P. P. Fuchs, J. F. Lefevre, J. Pouyet, and M. P. Daune, Biochemistry 15:3347–3351 (1976).CrossRefGoogle Scholar
  77. 75.
    N. E. Geacintov, A. Gagliano, V. Ivanivic, and I. B. Weinstein, Biochemistry 17:5256–5262 (1978).CrossRefGoogle Scholar
  78. 76.
    H. M. Sobell, C. C. Tsai, S. C. Jain, and S. G. Gilbert, J. Mol. Biol. 114:333–365 (1977).CrossRefGoogle Scholar
  79. 77.
    E. Fredericq, and C. Houssier, Biopolymers 11:2281–2308 (1972).CrossRefGoogle Scholar
  80. 78.
    J. Bontemps, C. Houssier, and E. Fredericq, Biophys. Chem. 2:301–315 (1974).CrossRefGoogle Scholar
  81. 79.
    J. Bontemps, C. Houssier, and E. Fredericq, Nucleic Acids Res. 2:971–984 (1975).CrossRefGoogle Scholar
  82. 80.
    A. K. Krey, Polymer 18:495–499 (1977).CrossRefGoogle Scholar
  83. 81.
    L. P. G. Wakelin, M. Romanos, T. K. Chen, E. S. Glaubiger, E. S. Canellakis, and M. J. Waring, Biochemistry 17:5057–5063 (1978).CrossRefGoogle Scholar
  84. 82.
    H. M. Wu, N. Dattagupta, M. Hogan, and D. M. Crothers, Biochemistry 19:626–634 (1980).CrossRefGoogle Scholar
  85. 83.
    M. Schoentjes, and E. Fredericq, Biopolymers 11:361–374 (1972).CrossRefGoogle Scholar
  86. 84.
    N. Dattagupta, M. Hogan, and D. M. Crothers, Proc. Natl. Acad. Sci. USA 75:4286–4290 (1978).ADSCrossRefGoogle Scholar
  87. 85.
    M. Hogan, N. Dattagupta, and D. M. Crothers, Nature 278:521524 (1979).Google Scholar
  88. 86.
    M. Daune, Metal Ions Biol. Syst. 3:1 (1974).Google Scholar
  89. 87.
    T. G. Spiro, Nucleic Acids - Metal Ions Interactions, in: “The Metal Ions in Biology Series,” Vol. 1 (1980).Google Scholar
  90. 88.
    C. Houssier, and M. Tricot, in: “Electro-Optics and Dielectric of Macromolecules and Colloids,” B. R. Jennings, ed., Plenum Press, NY, pp. 247–257 (1979).CrossRefGoogle Scholar
  91. 89.
    D. Ding, and F. S. Allen, in: “Electro-Optics and Dielectrics of Macromolecules and Colloids,” B. R. Jennings, ed., Plenum Press, NY, pp. 143–147 (1979).CrossRefGoogle Scholar
  92. 90.
    D. Hermann, C. Houssier, and W. Guschlbauer, Biochim. Biophys. Acta 564:456–472 (1979).Google Scholar
  93. 91.
    J. G. Elias, and D. Eden, submitted for publication (1980).Google Scholar
  94. 92.
    N. C. Stellwagen, submitted for publication (1980).Google Scholar
  95. 93.
    R. S. Farinato, and C. T. O’Konski, in preparation (1980).Google Scholar
  96. 94.
    J. C. Bernengo, P. Bezot, C. Bezot, B. Roux, and C. Marion, submitted for publication (1980).Google Scholar
  97. 95.
    J. G. Garcia-de-la-Torre, and V. M. Bloomfield, Biopolymers 16:1765–1778 (1977).CrossRefGoogle Scholar
  98. 96.
    J. Newman, H. L. Swinney, and L. A. Day, J. Mol. Biol. 116: 593–603 (1977).CrossRefGoogle Scholar
  99. 97.
    F. C. Chen, G. Koopmans, R. L. Wiseman, L. A. Day, and H. L. Swinney, Biochemistry 19:1373–1376 (1980).CrossRefGoogle Scholar
  100. 98.
    M. M. Tirado, and J. G. Garcia-de-la-Torre, J. Chem. Phys., in press (1980).Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Claude Houssier
    • 1
  1. 1.Laboratoire de Chimie PhysiqueUniversité de Liège (B6)LiegeBelgium

Personalised recommendations