Advertisement

The Electro-Optics of Proteins

  • J. C. Bernengo
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 64)

Abstract

Since the early work of Tinoco on fibrinogen in 1954, many electro-optical investigations, especially birefringence experiments have been made on protein solutions. The first experimenters were particularly attracted by the simple spherical or rod shaped models which fitted rather well with hydrodynamical data obtained a few years before on some extensively studied proteins such as serum albumin, fibrinogen, and collagen. Though their original purpose was more to verify the validity of phenomenological or theoretical equations on well defined, monodisperse molecules, they also had the feeling that electro-optical techniques could bring some knowledge about associative, and more generally, functional properties of many proteins. From a physico-chemical point of view, the initial purpose has been achieved fairly well, but the structural and functional assumptions deduced from these experiments were often later proved to be unsatisfactory or even wrong, as a result of recent improvements of biochemical and structural techniques. The main reasons for these discrepancies have to be sought in the initial product preparation and identification and in the non-physiological, low ionic strength solvents which had to be used for electro-optics purposes. In the last decade, a new generation of experiments has been carried out, not only on biological materials (including proteins and nucleic acids, but also on higher order particles, such as chromatin subfragments, mitochondria, membranes, viruses, bacteriophages and even bacteria); these new experiments deal with the most recent biochemical discoveries and try to complement their results.

Keywords

Hyaluronic Acid High Ionic Strength Permanent Dipole Moment Induce Dipole Moment Flow Birefringence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Yoshioka and C. T. O’Konski, Nat. Inst. of Gen. Med. Sciences, technical report n°4, (1965).Google Scholar
  2. 2.
    K. Yoshioka and H. Watanabe, Phys. Principles Tech. Protein Chem., A, 335–367, (1969), Academic Press, New York.Google Scholar
  3. 3.
    K. Yoshioka, Molecular Electro-optics, I, 2, 601–644, Marcel Dekker, New York (1978).Google Scholar
  4. 4.
    L. D. Kahn, Methods. Enzymol., 26, 323–337, Academic Press, New York (1972).Google Scholar
  5. 5.
    E. Fredericq and C. Houssier, Electric dichroism and electric birefringence, 167–180, Clarendon Press, Oxford (1973).Google Scholar
  6. 6.
    P. Moser, P. G. Squire, and C. T. O’Konski, J. Phys. Chem., 70, 3, 744–755 (1966).CrossRefGoogle Scholar
  7. 7.
    M. Daune, L. Freund and G. Spach, J. Chim. Phys., 59, 485–491 (1962).Google Scholar
  8. 8.
    A. Minakata and S. Kobayashi, Biopolymers, 12, 2623–2631 (1973).CrossRefGoogle Scholar
  9. 9.
    I. Tinoco and K. Yamaoka, J. Phys. Chem. 63, 423–432 (1959).CrossRefGoogle Scholar
  10. 10.
    M. Hanss and J. C. Bernengo, Biopolymers, 13, 2151–2162 (1973).CrossRefGoogle Scholar
  11. 11.
    G. B. Thurston and D. I. Bowling, J. of Coll. and Interface Sci. 30, 1, 34–45 (1969).CrossRefGoogle Scholar
  12. 12.
    C. T. O’Konski, K. Yoshioka and W. H. Orttung, J. Phys. Chem., 63, 1558 (1959).CrossRefGoogle Scholar
  13. 13.
    D. N. Holcomb and I. Tinoco, J. Phys. Chem., 67, 2691–2698 (1963).CrossRefGoogle Scholar
  14. 14.
    G. Fletcher, Biopolymers, 15, 2201–2217 (1976).CrossRefGoogle Scholar
  15. 15.
    J. C. Bernengo, B. Roux and M. Hanss, Rev. Sci. Instr. 44, 1083–1087 (1973).ADSCrossRefGoogle Scholar
  16. 16.
    R. Gerber, A. Minakata and D. Kahn, J. Mol. Biol. 92, 507–528 (1975).CrossRefGoogle Scholar
  17. 17.
    L. D. Kahn and L. P. Witnauer, Biochim. Biophys. Acta, 393, 247–252 (1975).Google Scholar
  18. 18.
    C. L. Riddiford, J. Amer. Chem. Soc., 11, 2 427–429 (1978).Google Scholar
  19. 19.
    K. Yoshioka and C. T. O’Konski, Biopolymers, 4, 499–507 (1966).CrossRefGoogle Scholar
  20. 20.
    L. D. Kahn and L. P. Witnauer, J. Amer. Leather Chem. Assoc., 64, 12–18 (1969).Google Scholar
  21. 21.
    L. D. Kahn and L. P. Witnauer, J. Applied Polymer Sci., 13, 141 (1969).CrossRefGoogle Scholar
  22. 22.
    L. D. Kahn and L. P. Witnauer, Biochim. Biophys. Acta, 243, 388 (1971).Google Scholar
  23. 23.
    S. Ananthanarayanan and A. Veis, Biopolymers, 11, 1365–1377 (1972).CrossRefGoogle Scholar
  24. 24.
    J. C. Bernengo, B. Roux and D. Herbage, Biopolymers, 13, 641–647 (1974).CrossRefGoogle Scholar
  25. 25.
    J. C. Bernengo, D. Herbage, C. Marion, and B. Roux, Biochim. Biophys. Acta, 532, 305–314 (1978).Google Scholar
  26. 26.
    J. C. Bernengo, B. Roux and D. Herbage, Electro-optics and dielectrics of macromolecules, 219–230, Jennings ed., Plenum Press, New York (1979).Google Scholar
  27. 27.
    J. C. Bernengo, B. Roux and D. Herbage, Ber. Bunsen Ges. Phys. Chem., 80, 246–249 (1976).Google Scholar
  28. 28.
    M. Isles, A. R. Forewaker, B. R. Jennings, T. Hardingham and H. Muir, Biochem J., 173, 237–243 (1978).Google Scholar
  29. 29.
    M. Miyahara and H. Noda, J. Biochem. 86, 239–248 (1979).Google Scholar
  30. 30.
    T. J. Herbert and F. D. Carlson, Biopolymers, 10, 2231–2252 (1971).CrossRefGoogle Scholar
  31. 31.
    A. Minakata and S. Kobayashi, Biopolymers, 12, 2623–2630 (1973).CrossRefGoogle Scholar
  32. 32.
    S. Kobayashi and T. Totsukd, Biochim. Biophys. Acta, 376, 375–383 (1975).Google Scholar
  33. 33.
    H. Nakajima and Y. Wada, Biopolymers, 16, 875–893 (1977).CrossRefGoogle Scholar
  34. 34.
    De la Torre and V. A. Bloomfield, Electro-optics and dielectrics of macromolecules, 183–196, Jennings ed., Plenum Press, New York (1979).Google Scholar
  35. 35.
    S. Kobayashi, H. Asai, and F. Oosawa, Biochim. Biophys. Acta, 88, 528 (1964).Google Scholar
  36. 36.
    S. Kobayashi, Biochim. Biophys. Acta, 88, 541 (1964).Google Scholar
  37. 37.
    M. Taniguchi, Electro-optics and dielectrics of macromolecules, 203–210, Plenum Press, New York.Google Scholar
  38. 38.
    S. Krause and D. E. Delaney, Biopolymers, 16, 1167–1181 (1977).CrossRefGoogle Scholar
  39. 39.
    R. F. Doolittle, Adv. Protein Chem. 27, 1–109 (1973).CrossRefGoogle Scholar
  40. 40.
    A. E. V. Hashemeyer and I. TTnoco, Biochemistry, 1 996 (1962).CrossRefGoogle Scholar
  41. 41.
    A. E. V. Hashemeyer, Biochemistry, 2, 851 (1963).CrossRefGoogle Scholar
  42. 42.
    A. E. V. Hashemeyer, Thromb. Res. 7, 1, 59–65 (1975).CrossRefGoogle Scholar
  43. 43.
    N. Nemoto, F. H. M. Nestler, J. L. Schrag, and J. D. Ferry, Biopolymers, 16, 1957–1969 (1977).CrossRefGoogle Scholar
  44. 44.
    F. Brosstad, P. Kierulf and H. C. Godai, Thromb. Res., 14, 705–712 (1979).CrossRefGoogle Scholar
  45. 45.
    W. H. Orttung, J. Phys. Chem., 73, 2908–2915 (1969).CrossRefGoogle Scholar
  46. 46.
    M. W. Makinen, J. B. Milstien and H. Kon, Biochemistry, 11, 21, 3851–3860 (1972).CrossRefGoogle Scholar
  47. 47.
    E. S. Rowe and J. Steinhardt, Biochemistry 15, 12, 2579–2585 (1976).CrossRefGoogle Scholar
  48. 48.
    A. K. Wright, M. R. Thompson, and R. L. Miller, Biochemistry, 14, 14, 3224–3228 (1975).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • J. C. Bernengo
    • 1
  1. 1.Laboratoire de BiophysiqueUniversité de NiceNiceFrance

Personalised recommendations