Advertisement

Electro-Optical Instrumentation Systems with Their Data Acquisition and Treatment

  • Claude Houssier
  • Chester T. O’Konski
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 64)

Abstract

The general principles of optical and photoelectronic detection schemes (Fig. 1) are common to all electro-optical instrumentation and have been described in a number of reviews on this subject (1–12). An electric field is applied to the sample, usually in the form of a short duration signal, for example, a single rectangular or bipolar pulse, a sinusoidal pulse train, or a condenser discharge. This results in a transitory perturbation of the sample. The signal, due to the reorientation of the particles, deformation or conformational changes caused by the electric field, is monitored through changes in one or more of several optical properties: absorbance (electric dichroism effect), refractive index (electric birefringence, double refraction, or Kerr effect), fluorescence (fluorescence polarization or intensity), light-scattering, Raman scattering, optical rotation, circular dichroism. Usually, the transient optical signal is detected by a photomultiplier which converts it into an electric signal which is analyzed after suitable amplification through an appropriate detection circuit. The time scales readily covered by these techniques extend, with conventional instruments, down to the microsecond range, and, with fast systems, down to the nanosecond range.

Keywords

Orientation Function Instrumentation System Optical Arrangement Detection Circuit Bipolar Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. T. O’Konski, Encyclopedia Polym. Sci. Technol. 9: 551–590 (1968).Google Scholar
  2. 2.
    K. Yoshioka, and H. Watanabe, in: “Physical Principles and Techniques of Protein Chemistry,” Part A, S. J. Leach, ed., Academic Press, NY, pp. 335–367 (1969).Google Scholar
  3. 3.
    E. Charney, in: “Procedures in Nucleic Acids Research,” Vol. 2, G. L. Cantoni and D. R. Davies, eds., Harper and Row, NY, pp. 176–204 (1971).Google Scholar
  4. 4.
    S. P. Stoylov, Adv. Colloid Interface Sci. 37:443–457 (1971).CrossRefGoogle Scholar
  5. 5.
    M. Hanss, and B. Roux, Ann. Phys. Biol. et Méd. 3:133–163 (1972).Google Scholar
  6. 6.
    B. R. Jennings, in: “Light-Scattering from Polymer Solutions,” Ch. 13, M. B. Huglin, ed., Academic Press, NY, pp. 530–579 (1972).Google Scholar
  7. 7.
    E. Fredericq, and C. Houssier, “Electric Dichroism and Electric Birefringence,” Clarendon Press, Oxford, U.K. (1973).Google Scholar
  8. 8.
    M. Tricot, and C. Houssier, in: “Polyelectrolytes,” K. C. Frisch, D. Klempner, and A. V. Patsis, eds., Technomic Publishing Co., Wesport, pp. 43–90 (1976).Google Scholar
  9. 9.
    C. T. O’Konski, “Molecular Electro-Optics. Part I. Theory and Methods,” Marcel Dekker, NY (1976).Google Scholar
  10. 10.
    C. T. O’Konski, “Molecular Electro-Optics. Part II. Applications to Biopolymers,” Marcel Dekker, NY (1978).Google Scholar
  11. 11.
    B. R. Jennings, Adv. Polym. Sci. 22:61–81 (1977).Google Scholar
  12. 12.
    B. R. Jennings, “Electro-Optics and Dielectrics of Macromolecules and Colloids,” Plenum Press, NY (1979).Google Scholar
  13. 13.
    P. J. Rudd, and B. R. Jennings, Lab. Pract., pp.535–537 (1973).Google Scholar
  14. 14.
    C. Houssier, Lab Pract. pp. 562–563 (1974).Google Scholar
  15. 15.
    J. W. Jost, and C. T. O’Konski, in: “Molecular Electro-Optics. Part II. Applications to Biopolymers,” C. T. O’Konski, ed., Marcel Dekker, NY, pp. 529–564 (1978).Google Scholar
  16. 16.
    A. S. Verkman, A. A. Pandiscio, M. Jennings, and A. K. Solomon, Anal. Biochem. 102:189–195 (1980).CrossRefGoogle Scholar
  17. 17.
    J. Newman, and H. L. Swinney, Biopolymers 15:301–315 (1976).CrossRefGoogle Scholar
  18. 18.
    D. C. Rau, and V. A. Bloomfield, Biopolymers 18:2783–2805 (1979).CrossRefGoogle Scholar
  19. 19.
    F. S. Allen, and K. E. VanHolde, Rev. Sci. Instrum. 41:211–216 (1970).ADSCrossRefGoogle Scholar
  20. 20.
    W. H. Rahe, R. J. Fraatz, L. K. Sun, D. R. C. Priore, and F. S. Allen, in: “Electro-Optics and Dielectrics of Macromolecules and Colloids,” B. R. Jennings, ed., Plenum Press, NY, pp. 57–66 (1979).Google Scholar
  21. 21.
    B. R. Jennings, in: “Molecular Electro-Optics. Part I. Theory and Methods,” C. T. O’Konski, ed., Marcel Dekker, NY, pp. 275319 (1976).Google Scholar
  22. 22.
    P. J. Ridler, and B. R. Jennings, in: “Electro-Optics and Dielectrics of Macromolecules and Colloids,” B. R. Jennings, ed., Plenum Press, NY, pp. 99–107 (1979).Google Scholar
  23. 23.
    E. D. Baily, and B. R. Jennings, AppliedOptics 11:527–532 (1972).ADSCrossRefGoogle Scholar
  24. 24In.
    E. D. Bally, and B. R. Jennings, J. Colloid terface Sci. 45: 177–189 (1973).Google Scholar
  25. 25.
    A. R. Foweraker, and B. R. Jennings, Lab. Pract. 25:318–320 (1976).Google Scholar
  26. 26.
    H. J. Coles, Polymer 18:554–556 (1977).CrossRefGoogle Scholar
  27. 27.
    H. Asai, N. Watanabe, and T. Okuyama, Rev. Sci. Instrum. 49: 236–237 (1978).ADSCrossRefGoogle Scholar
  28. 28.
    E. Neumann, in: “Topics in Bioelectrochemistry and Bioenergetics,” G. Milazzo, ed., John Wiley & Sons, London (1979).Google Scholar
  29. 29.
    E. Neumann, and A. Katchalsky, Proc. Natl. Acad. Sci. U.S.A. 69:992–997 (1972).CrossRefGoogle Scholar
  30. 30.
    M. Pollak, and H. A. Glick, Biopolymers 16:1007–1013 (1977).CrossRefGoogle Scholar
  31. 31.
    G. B. Thurston, and R. S. Wilkinson, J. Phys. E. Sci. Instrum. 6:289–293 (1973).ADSCrossRefGoogle Scholar
  32. 32.
    J. Schweitzer, and B. R. Jennings, J. Phys. D. Appl. Phys. 5: 297–309 (1972).ADSCrossRefGoogle Scholar
  33. 33.
    M. Hogan, N. Dattagupta, and D. M. Crothers, Proc. Natl. Acad. Sci. U.S.A. 75:195–199 (1978).CrossRefGoogle Scholar
  34. 34.
    R. Rigler, C. R. Rabel, and T. M. Jovin, Rev. Sci. Instrum. 45:580–588 (1974).ADSCrossRefGoogle Scholar
  35. 35.
    R. C. Williams, W. T. Ham, and A. K. Wright, Anal. Biochem. 73:52–64 (1976).CrossRefGoogle Scholar
  36. 36.
    B. L. Brown, and B. R. Jennings, J. Phys. E. Sci. Instrum. 3: 195–198 (1970).ADSCrossRefGoogle Scholar
  37. 37.
    J. C. Ravey, and C. Houssier, in: “Electro-Optics and Dielectrics of Macromolecules and Colloids,” B. R. Jennings, ed., Plenum Press, NY, pp. 67–76 (1979).Google Scholar
  38. 38.
    C. Houssier, Thèse d’Agrégation, Université de Liège (1977).Google Scholar
  39. 39.
    M. Dourlent, J. F. Hogrel, and C. Hélène, J. Am. Chem. Soc. 96: 3398–3406 (1974).CrossRefGoogle Scholar
  40. 40.
    M. Dourlent, and J. F. Hogrel, Biochemistry 15:430–436 (1976).CrossRefGoogle Scholar
  41. 41.
    T. Meites, and L. Meites, Talanta 19:1131–1139 (1972).CrossRefGoogle Scholar
  42. 42.
    C. T. O’Konski, K. Yoshioka, and W. H. Orttung, J. Phys. Chem. 63:1558–1565 (1959).CrossRefGoogle Scholar
  43. 43.
    M. Matsumoto, H. Watanabe, and K. Yoshioka, Scient. Pap. Coll. Gen. Educ. Tokyo 17:173–202 (1967).Google Scholar
  44. 44.
    M. J. Shah, J. Phys. Chem. 67:2215–2219 (1963).CrossRefGoogle Scholar
  45. 45.
    D. N. Holcomb, and I. Tinoco, J. Phys. Chem. 67:2691–2698 (1963).CrossRefGoogle Scholar
  46. 46.
    K. Kikuchi, and K. Yoshioka, Biopolymers 15:583–587 (1976).CrossRefGoogle Scholar
  47. 47.
    M. Shirai, private communication referred to in Ref. 49.Google Scholar
  48. 48.
    S. Sokerov, and G. Weill, Biophys. Chem. 10:161–171 (1979).CrossRefGoogle Scholar
  49. 49.
    S. Sokerov, and G. Weill, Biophys. Chem. 10:41–46 (1979).CrossRefGoogle Scholar
  50. 50.
    C. T. O’Konski, and B. H. Zimm, Science 111:113–116 (1950).ADSCrossRefGoogle Scholar
  51. 51.
    C. T. O’Konski, and A. G. Haltner, J. Am. Chem. Soc. 78:3604–3610 (1956).Google Scholar
  52. 51a.
    C. T. O’Konski, and A. G. Haltner, J. Am. Chem. Soc. 79:5634–5649 (1957).Google Scholar
  53. R. M. Pytkowicz, and C. T. O’Konski, Biochim. Biophys. Acta 36:466–470 (1959).Google Scholar
  54. 53.
    S. Krause, and C. T. O’Konski, J. Am. Chem. Soc. 81:5082–5088 (1959).Google Scholar
  55. C. T. O’Konski, and K. Bergmann, J. Chem. Phys. 37:1573–1574 (1962).Google Scholar
  56. 55.
    C. M. Paulson, Ph.D. Thesis, Univ. of California, Berkeley; C. M. Paulson, and C. T. O’Konski, Polymer Preprints 7:1175 (1966);Google Scholar
  57. C. M. Paulson, Ch. 7, Electric Dichroism of Macromolecules, in: “Molecular Electro-Optics,” Part 1, C. T. O’Konski, ed., Marcel Dekker, NY (1976).Google Scholar
  58. 56.
    C. T. O’Konski, and S. Krause, Electric Birefringence and Relaxation in Solutions of Rigid Macromolecules, Ch. 3, in: “Molecular Electro-Optics,” Part 1, C. T. O’Konski, ed., Marcel Dekker, NY (1976).Google Scholar
  59. 57.
    M. Matsumoto, H. Watanabe, and K. Yoshioka, Biopolymers 6:929–938 (1968);Google Scholar
  60. M. Matsumoto, H. Watanabe, and K. Yoshioka, same authors, Kolloid-Z. Z. Polymere 250:298–302 (1972).Google Scholar
  61. 58.
    A. E. Pritchard, and C. T. O’Konski, Ann. New York Acad. Sci. 303:159–169 (1977).ADSCrossRefGoogle Scholar
  62. 59.
    J. W. Jost, and C. T. O’Konski, Electro-Optic Data Acquisition and Processing, Ch. 15, in: “Molecular Electro-Optics. Part 2. Applications to Biopolymers,” C. T. O’Konski, ed., Marcel Dekker, pp. 529–564 (1978).Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Claude Houssier
    • 1
  • Chester T. O’Konski
    • 2
  1. 1.Laboratoire de Chimie PhysiqueUniversité de Liège (B6) LiegeBelgium
  2. 2.Department of ChemistryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations