Polyelectrolytes: A Survey

  • M. Mandel
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 64)


Many electro-optical studies at present deal with a class of systems which have been named polyelectrolytes, a contraction of polymers and electrolytes. They are macromolecules which when dissolved in a suitable polar solvent, generally water, bear a large number of ionized or ionizable groups. Under well defined conditions the macromolecular chain carries a large number of charges (fixed charges) which are always accompanied in solution by an equivalent number of small ions of opposite sign (the counterions). Solutions of polyelectrolytes have for a long time been known to exhibit certain specific properties which arise from the combination of the macromolecular and the electrolyte character1). The amount of experimental material accumulated in the course of the last forty years is quite impressive but its value not always of comparable level due to the different experimental conditions in which they have been obtained and the many pitfalls that threaten the experimental physical chemist when dealing with polyelectrolyte systems. Evidently some qualitative insight in the physical chemical behaviour of such systems has been gained, sometimes substantiated by more quantitative theoretical approaches. Nevertheless there still seem to exist many properties which are far from being well understood and application of new techniques often only increases the number of questions which remains unanswered or demonstrates the limited validity of the theoretical approaches used so far.


Average Dimension Persistence Length Macromolecular Chain Physical Chemical Property Exclude Volume Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    The following books give reviews of the physical chemical properties of polyelectrolyte solutions.Google Scholar
  2. a..
    S. A. Rice and M. Nagasawa, “Polyelectrolyte Solutions,” Academic Press, London, New York, 1961.Google Scholar
  3. b.
    F. Oosawa, “Polyelectrolytes,” Marcel Dekker, New York, 1970.Google Scholar
  4. c.
    H. Eisenberg, “Biological Macromolecules and Poly-electrolytes in Solution,” Clarendon Press Oxford, 1976.Google Scholar
  5. d.
    E. Sélegny, M. Mandel and U. P. Strauss eds., “Poly-electrolytes,” D. Reidel, Dordrecht-Boston, 1974.Google Scholar
  6. e.
    C. Tanford, “Physical Chemistry of Macromolecules,” Wiley, New York, 1961.Google Scholar
  7. 2.
    D. Dolar, in ref. 1. d., p. 97.Google Scholar
  8. b.
    S. Oman, Makromol. Chem. 178: 475 (1977).CrossRefGoogle Scholar
  9. 3.
    Z. Alexandrowicz, J. Polym. Sci. 43: 337 (1960).ADSCrossRefGoogle Scholar
  10. 4.
    For most recent determinations of y see papers by Kwak and coworkersGoogle Scholar
  11. a.
    J. C. T. Kwak, J. Phys. Chem. 77: 2790 (1973).CrossRefGoogle Scholar
  12. b.
    J. C. T. Kwak, M. C. O. Brien and D. A. Mclean, J. Phys. Chem. 79: 2381 (1975).CrossRefGoogle Scholar
  13. c.
    Y. M. Joshi and J. C. T. Kwak, J. Phys. Chem. 83: 1978 (1979).CrossRefGoogle Scholar
  14. 5.
    M. Nagasawa and A. Takahashi in “Light Scattering from Polymer Solutions,” M. B. Huglin ed., Academic Press, London, New York 1972, p. 671.Google Scholar
  15. 6.
    See e. g., A. Katchalsky, Pure and Applied Chemistry, 26: 327 (1971).CrossRefGoogle Scholar
  16. 7.
    M. Nagasawa in ref. 1. d., p. 57.Google Scholar
  17. 8.
    M. Mandel in ref. l. d., p. 39.Google Scholar
  18. 9.
    S. Lifson and A. Katchalsky, J. Polym. Sci. 13: 43 (1953).ADSCrossRefGoogle Scholar
  19. 10.
    A. Katchalsky, Z. Alexandrowicz and O. Kedem in “Chemical Physics of Ionic Solutions,” B. E. Conway and R. G. Barradas, eds, Wiley, New York, 1966, p. 295.Google Scholar
  20. 11.
    L. Onsager, Ann. N.Y. Acad. Sci. 51: 627 (1949).ADSCrossRefGoogle Scholar
  21. 12.
    L. Kotin and M. Nagasawa, J. Chem. Phys. 36: 873 (1962).ADSCrossRefGoogle Scholar
  22. b.
    L. M. Gross and U. P. Strauss in “Chemical Physics of Ionic Solutions,” B. E. Conway and R. G. Barradas eds., Wiley, New York, 1966, p. 361.Google Scholar
  23. 13.
    D. Stigter, J. Colloid Interf. Sci. 53: 296 (1975).CrossRefGoogle Scholar
  24. 14.
    D. Stigter, Progr. Colloid and Polymer Sci. 65: 45 (1978)CrossRefGoogle Scholar
  25. 15.
    M. Gueron and G. Weísbuch, Biopolymers 19: 353 (1980).CrossRefGoogle Scholar
  26. 16.
    M. Fixman, J. Chem. Phys. 70: 4995 (1979).ADSCrossRefGoogle Scholar
  27. 17.
    G. S. Manning, J. Chem. Phys. 51: 924 (1969)ADSCrossRefGoogle Scholar
  28. b.
    G. S. Manning, Ann. Rev. Phys. Chem. 23: 117 (1972).ADSCrossRefGoogle Scholar
  29. c.
    G. S. Manning in ref. l. d., p.9.Google Scholar
  30. 18.
    The notion of counterion condensation has been introduced by Imai.Google Scholar
  31. a.
    a. N. Imai and T. Ohinshi, J. Chem. Phys. 30: 1115 (1959).ADSCrossRefGoogle Scholar
  32. b.
    See ref. lb.Google Scholar
  33. 19.
    A. D. MacGillivray, J. Chem. Phys. 56:80. 83 (1972).Google Scholar
  34. 20.
    A. K. Iwasa, J. Chem. Phys. 62: 2967 (1975).ADSCrossRefGoogle Scholar
  35. b.
    A. K. Iwasa, J. Phys. Chem. 81: 1829 (1977).CrossRefGoogle Scholar
  36. 21.
    K. Iwasa and J. C. T. Kwak, J. Phys. Chem. 80: 215 (1976).CrossRefGoogle Scholar
  37. 22.
    K. Iwasa and J. C. T. Kwak, J. Phys. Chem. 81: 408 (1977).CrossRefGoogle Scholar
  38. 23.
    K. Iwasa, D. A. McQuarrie and J. C. T. Kwak, J. Phys. Chem. 82: 1939 (1978).CrossRefGoogle Scholar
  39. 24.
    G. S. Manning, Biophys. Chem. 7:95 (1977); 9: 65 (1978).Google Scholar
  40. b.
    G. S. Manning, Quart.-Rev. Biophys. 11: 179 (1978).CrossRefGoogle Scholar
  41. 25.
    I. Noda, T. Tsuge and M. Nagasawa, J. Phys. Chem. 74: 710 (1970).CrossRefGoogle Scholar
  42. 26.
    O. Kratky and G. Porod, Rec. Tray. Chim. Pays-Bas 68: 1106 (1949).CrossRefGoogle Scholar
  43. 27.
    See e. g., H. Yamakawa, “Modern Theory of Polymer Solutions,” Harper and Row, New York, 1971.Google Scholar
  44. 28.
    J. Skolnick and M. Fixman, Macromolecules 10: 844 (1977).CrossRefGoogle Scholar
  45. 29.
    T. Odijk, J. Polym. Sci. (Polymer Phys. Edn.) 15: 477 (1977).ADSCrossRefGoogle Scholar
  46. b.
    T. Odijk, Polymer 19: 989 (1978).CrossRefGoogle Scholar
  47. 30.
    H. Benoit and P. Doty, J. Phys. Chem. 57: 958 (1958).CrossRefGoogle Scholar
  48. 31.
    T. Odijk and A. C. Houwaart, J. Polymer Sci. (Polymer Phys. Edn) 16: 627 (1978).ADSCrossRefGoogle Scholar
  49. 32.
    M. Fíxman and J. Skolnick, Macromolecules 11: 863 (1978).ADSCrossRefGoogle Scholar
  50. 33.
    D. Stigter, Biopolymers, 16: 1435 (1977).CrossRefGoogle Scholar
  51. 34.
    T. Odíjk, Biopolymers 18: 3111 (1979).CrossRefGoogle Scholar
  52. 35.
    M. Mandel and J. Schouten, Macromolecules 13 (1980) to appear.Google Scholar
  53. 36.
    T. Odijk and M. Mandel, Physica 93: 298 (1978).CrossRefGoogle Scholar
  54. 37.
    J. O. Bernal and I. Fankuchen, J. of Gen. Physiol. 25: 111 (1941).CrossRefGoogle Scholar
  55. 38.
    E. Iizuka, Y. Kardo and Y. Ukai, Polym. J. 9: 134 (1977).Google Scholar
  56. 39.
    C. Wolff, J. Phys. (Paris) Colloq. 39, C-2: 169 (1978).Google Scholar
  57. 40.
    P. G. de Gennes, P. Pincus, R. M. Velasco and F. Brochard, J. Phys. (Paris) 37: 1461 (1976).CrossRefGoogle Scholar
  58. 41.
    M. Daoud, J. P. Cotton, B. Farnoux, G. Jannink, G. Sarma, H. Benoit, R. Duplessix, C. Picot and P. G. de Gennes, Macromolecules 8: 804 (1975).ADSCrossRefGoogle Scholar
  59. b.
    b. P. G. de Gennes, “Scaling Concepts in Polymer Physics,” Cornell University Press, Ithaca, London, 1979.Google Scholar
  60. 42.
    T. Odijk, Macromolecules 12: 688 (1979).ADSCrossRefGoogle Scholar
  61. 43.
    R. S. Koene, H. E. J. Smit and M. Mandel, Chem. Phys. Letters (1980) to appear.Google Scholar
  62. 44.
    See for a summary of some experimental results:Google Scholar
  63. a.
    M. Mandel and Van der Touw in ref. l. d-, p. 285.Google Scholar
  64. b.
    b. M. Mandel, Ann. N.Y. Acad. Sci. 303: 74 (1977).ADSCrossRefGoogle Scholar
  65. 45.
    M. Sakamoto, R. Hayakawa and Y. Wada, Biopolymers 17: 1507 (1978).CrossRefGoogle Scholar
  66. 46.
    M. Sakamoto, R. Hayakawa and Y. Wada, Biopolymers 18: 2769 (1979).CrossRefGoogle Scholar
  67. 47.
    S. Takashima, J. Phys. Chem. 70: 1372 (1966).CrossRefGoogle Scholar
  68. 48.
    M. S. Tung, R. Molinari, R. H. Cole and J. H. Gibbs, Biopolymers 16: 2653 (1977).CrossRefGoogle Scholar
  69. 49.
    T. Vreugdenhil, F. van der Touw and M. Mandel, Biophys. Chem. 10: 67 (1979).CrossRefGoogle Scholar
  70. 50.
    S. Zwolle, Thesis, Leiden 1978.Google Scholar
  71. 51.
    M. Mandel in “Dynamic Aspects of Biopolyelectrolytes and Biomembranes,” ( Kyoto Symposium, 1978 ), F. Oosawa, ed. To be published.Google Scholar
  72. 52.
    See i. a. H. Falkenhagen, “Theorie der Elektrolyte,” 2nd ed. Hirzel, Leipzig, 1971.Google Scholar
  73. 53.
    W. M. van Beek and M. Mandel, J. Chem. Soc. Faraday Trans. I. 74: 2339 (1978).Google Scholar
  74. 54.
    J. B. Hubbard, L. Onsager, W. M. van Beek and M. Mandel, Proc. Nat. Acad. Sci. 74: 401 (1977).ADSCrossRefGoogle Scholar
  75. b.
    b. J. B. Hubbard and L. Onsager, J. Chem. Phys. 67: 4850 (1977).ADSCrossRefGoogle Scholar
  76. 55.
    See e. g., J. B. Hasted, “Aqueous Dielectrics,” Chapman and Hall, London 1973.Google Scholar
  77. 56.
    M. Fixman, preprints (These papers bear some resemblance to the theory presented in S. S. Dukhin and V. N. Shilov, “Dielectric Phenomena and the Double Layer in Disperse Systems and Polyelectrolytes,” Wiley, New York and Keten Publishing House, Jerusalem, 1974 ).Google Scholar
  78. 57.
    F. van der Touw and M. Mandel, Biophys. Chem. 2: 231 (1974).CrossRefGoogle Scholar
  79. 58.
    C. T. O’Konski, J. Phys. Chem. 64: 605 (1960).CrossRefGoogle Scholar
  80. 59.
    M. Mandel, Mol. Phys. 4: 489 (1961).ADSCrossRefGoogle Scholar
  81. 60.
    F. van der Touw and M. Mandel, Biophys. Chem. 2: 218 (1974).CrossRefGoogle Scholar
  82. 61.
    J. P. McTague and J. H. Gibbs, J. Chem. Phys. 44: 4295 (1966).ADSCrossRefGoogle Scholar
  83. 62.
    F. Oosawa, Biopolymers 9:677 (1970); see also ref. lb.Google Scholar
  84. 63.
    J. M. Schurr, Biopolymers 10: 1371 (1971).CrossRefGoogle Scholar
  85. 64.
    A. Minakata, N. Imai and F. Oosawa, Biopolymers 11: 347 (1972).CrossRefGoogle Scholar
  86. 65.
    A. Warashina and A. Minakata, J. Chem. Phys. 58: 4743 (1973).ADSCrossRefGoogle Scholar
  87. 66.
    A. Minakata, Ann. N. Y. Acad. Sci. 303: 107 (1977).ADSCrossRefGoogle Scholar
  88. 67.
    G. S. Manning, Biophys. Chem. 9: 65 (1978).CrossRefGoogle Scholar
  89. 68.
    G. Weill and C. Hornick, ref. l. d., p. 277.Google Scholar
  90. 69.
    P. I. Meyer and W. E. Vaughan, Biophys. Chem. To appear.Google Scholar
  91. 70.
    W. van Düjk, F. van der Touw and M. Mandel. To be published.Google Scholar
  92. 71.
    S. Sokerov and G. Weill, Biophys. Chem. 10: 161 (1979).CrossRefGoogle Scholar
  93. 72.
    C. Houssier, J. Bontemps, X. Edmonts-Alt and F. Fredericq, Ann. N.Y. Acad. Sci. 303: 107 (1977).CrossRefGoogle Scholar
  94. 73.
    M. Tricot, C. Houssier, V. Desreux and F. van der Touw, Biophys. Chem. 8: 221 (1978).CrossRefGoogle Scholar
  95. 74.
    E. Charney, Biophys. Chem. 11: 157 (1980).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • M. Mandel
    • 1
  1. 1.Department of Physical Chemistry Gorlaeus LaboratoriesUniversity of LeidenLeidenThe Netherlands

Personalised recommendations