Interaction of Electric Fields with Membrane-Bound Polyionic Proteins

  • E. Neumann
  • K. Tsuji
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 64)


Recent progress in electro-optic instrumentation has led to experimental results which give new insight into the dynamic behavior of membrane-bound polyionic macromolecules, such as bacteriorhodopsin in purple membranes. Electric impulses of high field intensity (2×105 to 3×106 Vm−1,1 to 20 ps duration) cause transient changes in the optical absorbance of suspended purple membranes of Halobacterium halobium. The electric dichroism at 1 mM NaC1 pH ≅ 6 and at 293 K is dependent on field strength, pulse duration and wavelength of the monitoring, plane-polarized light in the range 400 nm to 650 nm. The optically indicated processes are, however, independent of bacteriorhodopsin concentration, of ionic strength and of the intensity of the monitoring light. These data and the analysis of time course and steady state of the reduced dichroism suggest electric field sensitive, intramembraneous structural changes which involve restricted orientation changes of the chromophore. A theoretical analysis of restricted orientation is developed and applied to the electro-optic data. As a result it is found that the electric dichroism of purple membranes is associated with a large induced dipole moment up to 7×10−26 Cm (2.1×104 Debye) which develops in a cooperative manner; the electric permanent dipole moment which is involved amounts to 4.7×10−28 Cm (140 Debye).


Orientation Factor Purple Membrane Permanent Dipole Moment Induce Dipole Moment Electric Permanent Dipole Moment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Neumann, in: Electro-optics and dielectrics of macromolecules and colloids,(Ed. B. R. Jennings) Plenum Press, New York, p. 233–245 (1979).Google Scholar
  2. 2.
    E. Neumann, in: Topics in Bioelectroehemistry and Bioenergetics, (Ed. G. Milazzo), John Wiley & Sons, London, Vol. 4, p. 113–161, (1980).Google Scholar
  3. 3.
    E. Neumann and J. Bernhardt, Ann. Rev. Biochem. 46, 117 (1977).CrossRefGoogle Scholar
  4. 4.
    E. Neumann, Neurochemistry Intern. 1, in press (1980)Google Scholar
  5. 5.
    K. Tsuji and E. Neumann, Intern. J. Biol. Macromol. 2, in press, (1980).Google Scholar
  6. 6.
    D. Schallreuter and E. Neumann, in prep. (1980).Google Scholar
  7. 7.
    A. Revzin and E. Neumann, Biophys. Chem. 2, 144 (1974).CrossRefGoogle Scholar
  8. 8.
    D. Oesterhelt and W. Stoeckenius, Nature New Biol. 233, 149 (1971).Google Scholar
  9. 9.
    D. Oesterhelt and W. Stoeckenius, Proc. Nat. Acad. Sci. USA, 70, 2853 (1973).ADSCrossRefGoogle Scholar
  10. 10.
    R. Shinar, S. Druckmann, M. Ottolenghi, and R. Korenstein, Biophys. J. 19, 1 (1977).CrossRefGoogle Scholar
  11. 11.
    B. Hess, R. Korenstein, and D. Kuschmitz in ‘Energetics and Structure of Halophilic Micro-organisms’ (Eds. S. R. Caplan and M. Ginzburg), Elsevier, Amsterdam, p. 89 (1978).Google Scholar
  12. 12.
    K. Tsuji and K. Rosenheck in ‘Electro-Optics and Dielectrics of Macromolecules and Colloids’ (Ed. B. R. Jennings), Plenum Press, New York, p. 77, (1979).Google Scholar
  13. 13.
    G. P. Borisevitch, E. P. Lukashev, A. A. Kononenko and A. B. Rubin, Biochim. Biophys. Acta, 546, 171 (1979).CrossRefGoogle Scholar
  14. 14.
    M. Eisenbach, C. Weissmann, G. Tanny, and S. R. Caplan, FEBS Lett. 81, 77 (1977).CrossRefGoogle Scholar
  15. 15.
    R. Henderson, J. Mol, Biol. 93, 123 (1975).CrossRefGoogle Scholar
  16. 16.
    A. N. Kriebel and A. C. Albrecht, J. Chem. Phys. 65, 4575, (1976).ADSCrossRefGoogle Scholar
  17. 17.
    T. G. Ebrey, B. Becher, B. Mao, P. Kilbride and B. Honig, J. Mol. Biol. 112, 377 (1977).CrossRefGoogle Scholar
  18. 18.
    M. P. Heyn, R. J. Cherry and U. Muller, J. Mol. Biol. 117, 607, (1977).CrossRefGoogle Scholar
  19. 19.
    C. T. O’Konskí, K. Yoshioka and W. H. Orttung, J. Phys. Chem. 63, 1558 (1959).CrossRefGoogle Scholar
  20. 20.
    E. Fredericq and C. Houssier, ‘Electric Dichroism and Electric Birefringence’, Clarendon Press, Oxford (1973).Google Scholar
  21. 21.
    F. J. Perrin, Phys. Radium, 7, 390 (1926).CrossRefGoogle Scholar
  22. 22.
    A. E. Blaurock and W. Stoeckenius, Nature New Biol., 233, 152 (1971).CrossRefGoogle Scholar
  23. 23.
    L. Keszthelyi, Biochim. Biophys. Acta, 598, 429 (1980).CrossRefGoogle Scholar
  24. 24.
    K. Razi Naqvi, J. Gonzalez-Rodriguez, R. J. Cherry, and D. Chapman, Nature New Biol. 245, 249 (1973).CrossRefGoogle Scholar
  25. 25.
    T. Konishi and L. Packer, FEBS Lett. 92, 1 (1978).CrossRefGoogle Scholar
  26. 26.
    A. Lewis, M. A. Marcus, B. Ehrenberg, and H. Crespi, Proc. Nat. Acad. Sci. USA 75, 4642 (1978).ADSCrossRefGoogle Scholar
  27. 27.
    T. Gillbro, Biochim. Biophys. Acta 504, 175 (1978).CrossRefGoogle Scholar
  28. 28.
    R. H. Lozier and W. Niederberger, Fed. Proc. 36, 1805 (1977).Google Scholar
  29. 29.
    K. Schulten and P. Tavan, Nature 272, 85 (1978).ADSCrossRefGoogle Scholar
  30. 30.
    J. B. Hurley, B. Becher, and T. G. Ebrey, Nature 272, 87 (1978).ADSCrossRefGoogle Scholar
  31. 31.
    K. Yoshioka and H. Watanabe in: ‘Physical Principles and Techniques of Protein Chemistry, Part A’ (Ed. S. J. Leach) Academic Press Inc., New York, p. 339 (1969).Google Scholar
  32. 32.
    C. J. F. Böttcher, ‘Theory of Electric Polarization’, Elsevier Sci. Pub. Co., Amsterdam (1973).Google Scholar
  33. 33.
    Yu. A. Ovchinnikov, N. G. Abdulaev, M. Yu Feigina, A. V. Kiselev and N. A. Lobanov, FEBS Lett. 100, 219 (1979)CrossRefGoogle Scholar
  34. 34.
    B. Becher and J. Y. Cassim, Biophys. J. 16, 1183 (1976).CrossRefGoogle Scholar
  35. 35.
    A. Wada in: ‘Poly-a-Amino Acids’ (Ed. G. Fasman), Marcel Dekker, New York, p. 369 (1967).Google Scholar
  36. 36.
    M. Rehorek and M. P. Heyn, Biochemistry, 18, 4977 (1979).CrossRefGoogle Scholar
  37. 37.
    B. Becher and J. Y. Cassim, Biophys. J., 19, 285 (1977).ADSCrossRefGoogle Scholar
  38. 38.
    A. Lewis, Phil. Trans. R. Soc. Lond., A293, 315 (1979).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • E. Neumann
    • 1
  • K. Tsuji
    • 1
  1. 1.Max-Planck-Institut für BiochemieMartinsried/MünchenGermany

Personalised recommendations