Advertisement

A History of Molecular Electro-Optics

  • Chester T. O’Konski
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 64)

Abstract

Before describing Kerr’s discovery of the first electro-optic effect to be detected, let us consider the physical principles of the phenomenon. Figure 1 illustrates the electric double refraction, or birefringence, and introduces conventional terminology. A plane polarized light beam enters a sample placed between plane parallel electrodes connected to an external voltage source. The direction of polarization of the light beam is specified by the direction of its electric vector, E i, which is normally oriented at 45° with respect to the direction of the applied electric field, as illustrated in the view along the direction of the light beam in Fig. 1 (a). The vector of the incident light, E i, may be decomposed into two components, one parallel to the direction of the applied electric field, designated E, and the other, E, perpendicular to the direction of the applied electric field. These two vectors are in phase as the electromagnetic radiation enters the medium. Under the influence of the external field the refractive indexes of the medium change and become unequal for the parallel and the perpendicular components; the sample behaves like a uniaxial crystal with its unique optic axis in the direction of the applied field. The two component rays traverse the medium at different velocities, and emerge out of phase, as illustrated in Fig. 1 (b). The resultant, Ee, produces a vector which describes an ellipse.

Keywords

Tobacco Mosaic Virus Applied Electric Field Carbon Disulfide Kerr Effect Optical Anisotropy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. C. Maxwell, “A Treatise on Electricity and Magnetism,” Oxford (1873).Google Scholar
  2. 2.
    J. Kerr, Phil. Mag., 50 (4):337 (1875).Google Scholar
  3. 3.
    J. Kerr, Phil. Mag., 50 (4):416 (1875).Google Scholar
  4. 4.
    J. Kerr, Phil. Mag., 8 (5):85 (1879).Google Scholar
  5. 5.
    J. Kerr, Phil. Mag., 8 (5):229 (1879).Google Scholar
  6. 6.
    J. Kerr, Phil. Mag,, 9 (5):157 (1880).Google Scholar
  7. 7.
    W. C. Röntgen, Phil. Mag., 10 (5):77 (1880).Google Scholar
  8. 8.
    J. Kerr, Phil. Mag., 13 (5):153 (1882).Google Scholar
  9. 9.
    J. Kerr, Phil. Mag, 13 (5):248 (1882).Google Scholar
  10. 10.
    J. Kerr, Phil. Mag., 37 (5):380 (1894).Google Scholar
  11. 11.
    J. Kerr, Phil. Mag., 38 (5):144 (1894).Google Scholar
  12. 12.
    P. Langevin, Radium 7:249 (1910).CrossRefGoogle Scholar
  13. 13.
    P. Langevin, Compt. Rend., 151:475 (1910).Google Scholar
  14. 13a.
    Anon., Proc. Roy. Soc., 82A, Obituary Notices, pp. i-v (1909).Google Scholar
  15. 13b.
    C. T. O’Konski, Appendix A, Mementos of John Kerr, in: “Molecular Electró-Optics,” Part 1, Theory and Methods, Marcel Dekker Inc., New York, pp. 515–523 (1976).Google Scholar
  16. 14.
    J. E. H. Gordon, Phil.. Mag, 2 (5):203 (1876).Google Scholar
  17. 15.
    O. J. Lodge, Phil. Mag., 2 (5):353 (1876).Google Scholar
  18. 16.
    J. J. Mackenzie, Ann. Psik M. Chem., 238 (2):356 (1877).Google Scholar
  19. 17.
    G. Quincke, Phil. Mag., 10:537 (1880)Google Scholar
  20. G. Quincke, Ann. Physik 10:536 (1880).Google Scholar
  21. 18.
    H. Brongersma, Phil. Mag. 14 (5):127 (1882).Google Scholar
  22. 19.
    J. Kerr, Phil. Mag., 3 (5):321 (1877).Google Scholar
  23. 19a.
    J. Larmor, Phil. Trans., A190:232 (1897)Google Scholar
  24. J. Larmor, Aether and Matter, 1:351 (1900).Google Scholar
  25. 20.
    W. Voigt, Ann. Physik, 4:197 (1901).ADSMATHCrossRefGoogle Scholar
  26. 21.
    R. Ladenburg, and H. Kopfermann, Ann. Physik, 78 (4):659 (1925).Google Scholar
  27. 22.
    T. H. Havelock, Proc. Roy. Soc. (London), A80:28 (1907)ADSGoogle Scholar
  28. T. H. Havelock, Phys. Rev., 28:136 (1909)ADSGoogle Scholar
  29. T. H. Havelock, Proc. Roy. Soc. (London), A84:492 (1911).ADSGoogle Scholar
  30. 23.
    A. Enderle, Dissertation, Freiburg (1912).Google Scholar
  31. 23a.
    W. Voigt, Nadir. Kgl. Ges. Wiss. Göttingen, 577–93 (1912)Google Scholar
  32. W. Voigt, Chem. Abstr., 7:3914 (1913).Google Scholar
  33. 24.
    F. Pockels, Radium 10:152 (1913).CrossRefGoogle Scholar
  34. 25.
    A. Cotton, and H. Mouton, J. Chim. Phys., 10:692 (1912).Google Scholar
  35. 26.
    P. Debye, Physik Z., 13:97 (1912).Google Scholar
  36. 27.
    J. J. Thomson, Phil. Mag., 28:757 (1914).Google Scholar
  37. 28.
    P. Langevin, J. Phys., 4 (4):678 (1905Google Scholar
  38. P. Langevin, Ann. Chim. Phys., 5 (8): 70 (1905).MATHGoogle Scholar
  39. 29.
    M. Born, Ann. Physik, 55:177 (1918).ADSCrossRefGoogle Scholar
  40. 30.
    C. Szivessy, Handb. Physik, 21:S724 (1929).Google Scholar
  41. 31.
    G. Briegleb and K. L. Wolf, Fortschr. Chem. Physik Physik. Chem., 21:1–58 (1931).Google Scholar
  42. 32.
    R. de Mallemann, Ann. Physik 2:21 (1924)Google Scholar
  43. R. de Mallemann, Compt. Rend., 193:523 (1931).Google Scholar
  44. 33.
    P. Debye, Handb. Radiol., 6:597–760 (1925)Google Scholar
  45. P. Debye “Polar Molecules,” Dover, New York (1929).MATHGoogle Scholar
  46. 33a.
    R. W. Wood, “Physical Optics,” 3rd Ed., Macmillan, New York, Chap. 21 and 22 (1934).Google Scholar
  47. 34.
    J. W. Beams, Rev. Mod. Phys., 4:133 (1932).ADSMATHCrossRefGoogle Scholar
  48. 35.
    C. V. Raman, and K. S. Krishnan, Proc. Roy. Soc. (London), A117:1 (1927).ADSGoogle Scholar
  49. 36.
    M. Born, “Optik,” Springer, Berlin (1933).Google Scholar
  50. 36a.
    J. W. Beams, Rev. Sci. Instr., 1:780 (1930).ADSCrossRefGoogle Scholar
  51. 37.
    R. de L. Kronig, Z. Physik, 45:458 (1927)ADSMATHCrossRefGoogle Scholar
  52. R. de L. Kronig, 47:702 (1928).Google Scholar
  53. 38.
    M. Born, and P. Jordan, “Elementare Quantenmechanik,” Springer, Berlin (1930).MATHGoogle Scholar
  54. 39.
    Th. Neugebauer, Z. Physik, 73:386 (1932)ADSCrossRefGoogle Scholar
  55. Th. Neugebauer, Z. Physik, 660 (1933)Google Scholar
  56. Th. Neugebauer, Z. Physik, 86:392 (1933).ADSMATHCrossRefGoogle Scholar
  57. 40.
    R. Serber, Phys. Rev., 43 (2):1003 (1933).ADSMATHCrossRefGoogle Scholar
  58. 41.
    J. H. van Vleck, “Theory of Electric and Magnetic Susceptibilities,” Oxford University Press, London, p. 366, (1932).MATHGoogle Scholar
  59. 41a.
    A. D. Buckingham, Ch. 2, Electric Birefringence in Gases and Liquids, in: “Molecular Electro-Optics, Part 1. Theory and Methods,” C. T. O’Konski, ed., Marcel Dekker, Inc., New York, pp. 27–62 (1976).Google Scholar
  60. 41b.
    T. K. Ha, Ch. 14 Quantum Theory and Calculation of Electric Polarizability, in: “Molecular Electro-Optics, Part 1. Theory and Methods,” C. T. O’Konski, ed., Marcel Dekker, Inc., New York, pp. 471–513 (1976).Google Scholar
  61. 41c.
    W. Liptay, Ch. 6 Optical Absorption in an Electric Field, in: “Molecular Electro-Optics, Part 1. Theory and Methods,” C. T. O’Konski, ed., Marcel Dekker, Inc., New York, pp. 207–242 (1976).Google Scholar
  62. 41d.
    C. T. O’Konski, this volume, “Theory of Kerr Constant.”Google Scholar
  63. 42.
    R. Gans, Ann. Physik, 63 (4):97 (1921).ADSCrossRefGoogle Scholar
  64. 43.
    P. Debye, and H. Sack, 6 (ii):69–179 (1934).Google Scholar
  65. 44.
    H. A. Stuart, “Hand-und Jahrbuch der Chemischen Physik,” Vol. 10, Part 3, A. Eucken and K. S. Wolf, eds., (1939).Google Scholar
  66. 45.
    H. A. Stuart, “Die Struktur des freien Molekuls,” Springer, Berlin, Chap. 7, p. 315 (1952).Google Scholar
  67. 46.
    J. R. Partington, “An Advanced Treatise on Physical Chemistry,” Vols. 4 & 5, Longmans, Green, London (1953 & 1954).Google Scholar
  68. 47.
    C. G. Le Fevre and R. J. W. Le FevreRev. Pure Appl. Chem., 25:261 (1955).Google Scholar
  69. 48.
    A. Cotton, and H. Mouton, Compt. Rend., 141:317–349 (1905).Google Scholar
  70. 49.
    J. C. Maxwell, Proc. Roy. Soc. (London), 22:46 (1874)Google Scholar
  71. J. C. Maxwell, Ann. Phys., 151:151 (1874).Google Scholar
  72. 50.
    G. Meslin, Compt. Rend., 136:888–930 (1903)Google Scholar
  73. G. Meslin, J. Phys., 7:856 (1908).Google Scholar
  74. 51.
    J. Chaudier, Compt. Rend., 137:248 (1903)Google Scholar
  75. J. Chaudier, Ann. Chim. Phys., 15:67 (1908)Google Scholar
  76. J. Chaudier, Compt. Rend., 149:202 (1909).Google Scholar
  77. 52.
    P. Drapier, Compt. Rend., 157:1063 (1913)Google Scholar
  78. 52a.
    Y. Bjornstahl, Ann. Physik, 56:161 (1918).ADSCrossRefGoogle Scholar
  79. 53.
    C. T. O’Konski, K. Yoshioka, and W. H. Orttung, J. Phys. Chem., 63:1558 (1959).CrossRefGoogle Scholar
  80. 53a.
    C. M. Paulson, Jr., Ch. 7 Electric Dichroism of Macromolecules, in: “Molecular Electro-Optics, Part 1. Theory and Methods,” C. T. O’Konski, ed., Marcel Dekker, Inc., New York, pp. 243–273 (1976).Google Scholar
  81. 53b.
    E. Fredericq, and C. Houssier, “Electric Birefringence and Electric Dichroism,” Clarendon, Oxford (1973).Google Scholar
  82. 54.
    J. Kumamoto, J. C. Powers, Jr., and W. R. Heller, J. Chem. Phys. 36:2893 (1962).ADSCrossRefGoogle Scholar
  83. 55.
    C. T. O’Konski, and K. Bergmann, J. Chem. Phys., 37:1573 (1962).ADSCrossRefGoogle Scholar
  84. 56.
    E. Lippert, Z. Electrochem., 61:962 (1957).Google Scholar
  85. 57.
    J. Czekalla, Z. Electrochem., 64:1221 (1960)Google Scholar
  86. J. Czekalla, Chimia (Aarau), 15:26 (1961)Google Scholar
  87. J. Czekalla, W. Liptay, and J. O. Meyers, Ber. Bunsenges. Physik. Chem., 67:465 (1963)Google Scholar
  88. J. Czekalla, and G. Wick, Z. Electrochem., 65:727 (1961).Google Scholar
  89. 58.
    W. Liptay, Z. Naturforsch, 20a:272 (1965)ADSGoogle Scholar
  90. W. Liptay and J. Czekalla, Z. Naturforsch, 15a:1072 (1960)ADSGoogle Scholar
  91. W. Liptay and J. Czekalla, Z. Electrochem., 65:721 (1961).Google Scholar
  92. 59.
    H. Labhart, Adv. Chem. Phys., 13:179 (1967)CrossRefGoogle Scholar
  93. H. Labhart, Chimia (Aarau), 15:20 (1961)Google Scholar
  94. H. Labhart, Heiv. Chim. Acta, 44:457 (1961)CrossRefGoogle Scholar
  95. H. Labhart, Experientia, 22:65 (1966)CrossRefGoogle Scholar
  96. H. Labhart and G. Wagniere, Heiv. Chim. Acta, 46:1314 (1963).CrossRefGoogle Scholar
  97. 60.
    W. Liptay, Mod. Quantum Chem., 3:45 (1965).Google Scholar
  98. 60a.
    J. Czekalla, and K. O. Meyer, Z. Physik. Chem. (Frankfurt), 27:185 (1961).CrossRefGoogle Scholar
  99. 61.
    G. Weber, J. Chem. Phys., 43:521 (1965).ADSCrossRefGoogle Scholar
  100. 61a.
    R. D. Keynes, Ch. 21 Electro-Optics of Nerve Membranes, in: “Molecular Electro-Optics, Part 2: Applications to Biopolymers,” C. T. O’Konski, ed, Marcel Dekker, Inc., New York, pp. 743–760 (1978).Google Scholar
  101. 61b.
    G. Weill, this volume, Chap. on Polarized Fluorescence.Google Scholar
  102. 62.
    H. Siedentopf, Wiss. Mikrosk. M., 29:1 (1912).Google Scholar
  103. 63.
    H. R. Kruyt, Kolloid-Z., 19:161 (1916).CrossRefGoogle Scholar
  104. 64.
    H. Freundlich, Z. Elektrochem. 22:27 (1916).Google Scholar
  105. 65.
    P. Debye, J. Appl. Phys., 15:338 (1944).ADSCrossRefGoogle Scholar
  106. 66.
    B. Zimm, J. Chem. Phys. 16:1099 (1948).ADSCrossRefGoogle Scholar
  107. 67.
    K. A. Stacey, “Light Scattering in Physical Chemistry,” Academic, New York (1956).Google Scholar
  108. 67a.
    M. B. Huglin, “Light Scattering from Polymer Solutions,” Academic, New York (1972).Google Scholar
  109. 67b.
    B. R. Jennings, Ch. 8 Electric Field Light Scattering, in: “Molecular Electro-Optics, Part 1: Theory and Methods, C. T. O’Konski, ed., Marcel Dekker, Inc., New York pp. 275–319 (1976).Google Scholar
  110. 67c.
    B. R. Jennings, this volume, Chap. on Light Scattering.Google Scholar
  111. 68.
    I. Tinoco, Jr., J. Phys. Chem., 60:1619 (1956).CrossRefGoogle Scholar
  112. 69.
    N. Go, J. Chem. Phys., 43:1275 (1965)CrossRefGoogle Scholar
  113. N. Go, J. Phys. Soc. Japan, 23:88 (1967).ADSCrossRefGoogle Scholar
  114. 69a.
    I. Tinoco, Jr., Ch. 10 Circular Dichroism and Optical Rotation in an Electric Field, in: “Molecular Electro-Optics, Part 1. Theory and Methods, C. T. O’Konski, ed., Marcel Dekker, Inc., New York, pp. 367–379 (1976).Google Scholar
  115. 70.
    S. J. Hoffman, and R. Ullman, J. Polymer Sci., C31:205 (1970).Google Scholar
  116. 71.
    A. D. Buckingham, Proc. Phys. Soc. (London), B69:344 (1956).ADSGoogle Scholar
  117. 72.
    S. Kielich, IEEE J. Quantum Electronics, QE-4:744 (1968).ADSCrossRefGoogle Scholar
  118. 72a.
    N. Bloembergen, Am. J. Phys., 35:989–1023 (1967).ADSCrossRefGoogle Scholar
  119. 73.
    R. Y. Chiao, and J. Godine, Phys. Rev., 185:430 (1969).ADSCrossRefGoogle Scholar
  120. 74.
    W. Gordy, W. V. Smith, and R. R. Trambarulo, “Microwave Spectroscopy,” Wiley, New York (1953)Google Scholar
  121. C. H. Townes and A. L. Schawlow, “Microwave Spectroscopy,” McGraw-Hill, New York (1955).Google Scholar
  122. 75.
    D. A. Dows, and A. D. Buckingham, J. Mol. Suectry, 12:189 (1964).ADSCrossRefGoogle Scholar
  123. 76.
    A. D. Buckingham, and D. A. Ramsey, J. Chem. Phys., 43:3721 (1965).ADSCrossRefGoogle Scholar
  124. 77.
    R. D. Conrad, and D. A. Dows, J. Mol. Spectry., 32:276 (1969).ADSCrossRefGoogle Scholar
  125. 78.
    D. A. Haner, and D. A. Dows, J. Mol. Spectry., 34:296 (1970).ADSCrossRefGoogle Scholar
  126. 79.
    J. M. Brown, A. D. Buckingham, and D. A. Ramsay, Can. J. Phys., 49:914 (1970).ADSCrossRefGoogle Scholar
  127. 80.
    R. Pecora, Ann. Rev. Biophys. Bioeng., 1:257 (1972)CrossRefGoogle Scholar
  128. 80a.
    W. H. Flygare, S. L. Hartford, and B. R. Ware, Ch. 9 Electrophoretic Light Scattering, in: “Molecular Electro-Optics, Part 1: Theory and Methods,” C. T. O’Konski, ed., Marcel Dekker, Inc., New York, pp. 321–366 (1978).Google Scholar
  129. 81.
    P. Debye, and K. Kleboth, J. Chem. Phys., 42:3155 (1965).ADSCrossRefGoogle Scholar
  130. 82.
    F. T. Gucker, Jr., C. T. O’Konski, H. B. Pickard, and J. N. Pitts, Jr., J. Am. Chem. Soc., 69:2422 (1947).CrossRefGoogle Scholar
  131. 83.
    M. A. Lauffer, J. Am. Chem. Soc., 61:2412 (1939).Google Scholar
  132. 84.
    J. Errera, J. Th. G. Overbeek, and H. Sack, J. Chim. Phys., 32:681 (1935).Google Scholar
  133. 84a.
    W. Kuhn, and H. Kuhn, Helv. Chim. Acta, 27:493 (1944).CrossRefGoogle Scholar
  134. 85.
    W. Heller, Rev. Mod. Phys., 14:390 (1942).Google Scholar
  135. 86.
    C. T. O’Konski, and B. Zimm, Science, 111:113 (1950).ADSCrossRefGoogle Scholar
  136. 87.
    C. T. O’Konski, and A. J. Haltner, J. Am. Chem. Soc., 78:3604 (1956).CrossRefGoogle Scholar
  137. 88.
    H. Benoit, Compt. Rend., 228:1716 (1949).Google Scholar
  138. 89.
    H. Benoit, Compt. Rend., 229:30 (1949).Google Scholar
  139. 90.
    H. Benoit, Ann. Phys., 6:561 (1951).Google Scholar
  140. 91.
    W. Kaye, and R. Devaney, J. Appl. Phys., 18:912 (1947).ADSCrossRefGoogle Scholar
  141. 92.
    C. V. Raman, and S. C. Sirkar, Nature, 121:794 (1928).ADSCrossRefGoogle Scholar
  142. 93.
    D. W. Kitchin, and H. Mueller, Phys. Rev., 32:979 (1928).ADSCrossRefGoogle Scholar
  143. 94.
    H. Abraham, and J. Lemoine, J. Phys., 9 (3):262 (1900).Google Scholar
  144. 95.
    A. Peterlin, and H. A. Stuart, “Hand-und Jahrbuch der Chemischen Physik,” Vol. 8, Part 1B, A. Euken, and K. L. Wolf, eds., Akademische Verlagsges., Leipzig, pp. 1–115 (1943); (Reprint, University of Michigan Press, Ann Arbor, 1948).Google Scholar
  145. 96.
    N. A. Tolstoi, and P. P. Feofilov, Dokl. Akad. Nauk SSSR, 60:219 (1948)Google Scholar
  146. N. A. Tolstoi, Dokl. Akad. Nauk SSSR, 59:1563 (1948).Google Scholar
  147. 97.
    N. A. Tolstoi, and P. P. Feofilov, Zh. Eksperim, i Teor, Fiz., 19:421 (1949).Google Scholar
  148. 98.
    N. A. Tolstoi, and P. P. Feofilov, Dokl. Adad. Nauk SSSR, 66:617 (1949).Google Scholar
  149. 99.
    A. G. Haltner, Ph.D. Thesis, University of California, Berkeley (1955).Google Scholar
  150. 100.
    C. T. O’Konski, and A. G. Haltner, J. Am. Chem. Soc., 79: 5634–5649 (1957).CrossRefGoogle Scholar
  151. 101.
    G. Schwarz, Z. Physik, 145:563–584 (1956).Google Scholar
  152. 102.
    M. Eigen, and G. Schwarz, J. Colloid Science 12:181–194 (1957).CrossRefGoogle Scholar
  153. 103.
    M. Mandel, Mol. Phys., 4:489–496 (1961)Google Scholar
  154. M. Mandel, and F. van der Touw, Dielectric Properties of Polylectrolytes, in: “Polyelectrolytes, E. Sélegny, ed., D. Reidel, Dortrecht, The Netherlands (1974).Google Scholar
  155. 104.
    M. Mandel, this volume.Google Scholar
  156. 105.
    C. T. O’Konski, J. Chem. Phys., 23:1559 (1955)Google Scholar
  157. C. T. O’Konski, J. Phys. Chem., 64:605–619 (1950).CrossRefGoogle Scholar
  158. 106.
    C. T. O’Konski, and F. E. Harris, J. Phys. Chem. 61:1172–1174 (1957).CrossRefGoogle Scholar
  159. 107.
    C. T. O’Konski, and S. Krause, J. Phys. Chem., 74:3243–3250 (1970).CrossRefGoogle Scholar
  160. 108.
    C. T. O’Konski, this volume, “Theory of the Kerr Constant.”Google Scholar
  161. 109.
    G. Schwarz, Z. Physik Chem. [N.F.], 19:286–314 (1959).Google Scholar
  162. 110.
    J. G. Kirkwood, and J. B. Schumaker, Proc. Natl. Acad. Sci. USA, 38:855 (1952).ADSCrossRefGoogle Scholar
  163. 111.
    P. Moser, P. G. Squire, and C. T. O’Konski, J. Phys. Chem., 70:744–756 (1966).CrossRefGoogle Scholar
  164. 112.
    P. G. Squire, P. Moser, and C. T. O’Konski, Biochemistry, 7:4261–4272 (1968).CrossRefGoogle Scholar
  165. 113.
    S. Krause, Ph.D. Thesis, Dept. of Chemistry, University of California, Berkeley, CA (1957).Google Scholar
  166. 114.
    S. Krause, and C. T. O’Konski, J. Am. Chem. Soc., 81:5082–5088 (1959)CrossRefGoogle Scholar
  167. S. Krause, and C. T. O’Konski, Biopolymers, 1:503–515 (1963).CrossRefGoogle Scholar
  168. 115.
    K. Yoshioka, Ch. 17 Electro-Optics of Polypeptides and Proteins, in: “Molecular Electro-Optics, Part 2. Applications to Biopolymers, C. T. O’Konski, ed., Marcel Dekker, Inc., New York, pp. 601–643 (1978).Google Scholar
  169. 116.
    K. Yoshioka, and C. T. O’Konski, Biopolymers, 4:499–507 (1966)CrossRefGoogle Scholar
  170. K. Yoshioka, and C. T. O’Konski, Abstracts of papers, 136th Meeting, Am. Chem. Soc., Atlantic City, p. 28S (1959).Google Scholar
  171. 117.
    C. T. O’Konski, K. Yoshioka, and W. H. Orttung, J. Phys. Chem., 63:1558–1565 (1959).CrossRefGoogle Scholar
  172. 118.
    M. J. Shah, J. Phys. Chem., 67:2215 (1963).Google Scholar
  173. 119.
    D. N. Holcomb, and I. Tinoco, Jr., J. Phys. Chem., 67:2691–2698 (1963).CrossRefGoogle Scholar
  174. 120.
    C. T. O’Konski, and S. Krause, Ch. 3 Electric Birefringence and Relaxation in Solutions of Rigid Macromolecules, in: “Molecular Electro-Optics, Part 1. Theory and Methods,” C. T. O’Konski, ed., Marcel Dekker, Inc., New York, pp. 63–120 (1976).Google Scholar
  175. 121.
    C. T. O’Konski, and N. C. Stellwagen, Biophys. J., 5:607–613 (1965).CrossRefGoogle Scholar
  176. 122.
    K. Kikuchi, and K. Yoshioka, Biopolymers, 12:2667–2679 (1973)CrossRefGoogle Scholar
  177. K. Kikuchi, and K. Yoshioka, Biopolymers, 15:1669–1676 (1976).CrossRefGoogle Scholar
  178. 123.
    M. Fujimori, K. Kikuchi, K. Yoshioka, and S. Kubota, Bio-polymers, 18:2005–2013 (1979)Google Scholar
  179. K. Yoshioka, M. Fujimori, and K. Kikuchi, Intl. J. Biol. Macromolecules, 2 (in press) (1980).Google Scholar
  180. 124.
    E. Neumann, and A. Katchalsky, Proc. Natl. Acad. Sci. USA, 69:993–997 (1972)ADSCrossRefGoogle Scholar
  181. A. Revzin, and E. Neumann, Biophys. Chem., 2:144–150 (1974).CrossRefGoogle Scholar
  182. 125.
    D. Pörschke, this volume, Chapter on Threshold Effects.Google Scholar
  183. 126.
    C. G. Le Févre, R. J. W. Le Févre, and G. M. Parkins, J. Chem. Soc., 1958:1468–1474 (1958).CrossRefGoogle Scholar
  184. 127.
    C. G. Le Févre, R. J. W. Le Févre, and G. M. Parkins, J. Chem. Soc., 1960:1418–1419 (1960).Google Scholar
  185. 128.
    M. Aroney, R. J. W. Le Févre, and G. M. Parkins, J. Chem. Soc., 1960:2890–2895 (1960).CrossRefGoogle Scholar
  186. 129.
    C. G. Le Févre, and R. J. W. Le Févre, in: “Technique of Organic Chemistry,” A. Wiessberger, ed., 3rd Ed., Vol. I, Part III, pp. 2459–2496, Interscience Publishers, New York (1960).Google Scholar
  187. 130.
    R. J. W. Le Févre, and K. M. S. Sundaram, J. Chem. Soc., 1962:1494–1502 (1962).CrossRefGoogle Scholar
  188. 131.
    R. J. W. Le Févre, and K. M. S. Sundaram, J. Chem. Soc., 1962: 4003–4008 (1962).CrossRefGoogle Scholar
  189. 132.
    R. J. W. Le Févre, and K. M. S. Sundaram, J. Chem. Soc., 1963: 1880–1887 (1963).CrossRefGoogle Scholar
  190. 133.
    R. J. W. Le Févre, A. Sundaram, and K. M. S. Sundaram, J. Chem. Soc., 1963:3180–3188 (1963).CrossRefGoogle Scholar
  191. 134.
    R. J. W. Le Févre, and K. M. S. Sundaram, J. Chem. Soc., 1963:3188–3193 (1963).CrossRefGoogle Scholar
  192. 135.
    R. J. W. Le Févre, and K. M. S. Sundaram, J. Chem. Soc., 1963: 3547–3554 (1963).CrossRefGoogle Scholar
  193. 136.
    R. J. W. Le Févre, and K. M. S. Sundaram, J. Chem. Soc., 1964: 556–562 (1964).CrossRefGoogle Scholar
  194. 137.
    R. J. W. Le Févre, and K. M. S. Sundaram, J. Chem. Soc., 1964: 3518–3523 (1964).CrossRefGoogle Scholar
  195. 138.
    H. Benoit, Ann. Phys., 6:561–609 (1951).Google Scholar
  196. 139.
    I. Tinoco, Jr., J. Am. Chem. Soc., 77:4486–4489 (1955).Google Scholar
  197. 140.
    I. Tinoco, Jr., and K. Yamaoka, J. Phys. Chem., 63:423–427 (1959).CrossRefGoogle Scholar
  198. 141.
    H. Benoit, J. Chim. Phys., 47:719–721 (1950)Google Scholar
  199. H. Benoit, J. Chim. Phys., 48:612–614 (1951)Google Scholar
  200. 142.
    G. A. Dvorkin, Dokl. Akad. Nauk SSSR, 135:739–742 (1960)Google Scholar
  201. G. A. Dvorkin, Biofizika, 6:403–409 (1961).Google Scholar
  202. 143.
    G. A. Dvorkin, and V. I. Krinskii, Dokl. Akad. Nauk SSSR, 140: 942–945 (1961)Google Scholar
  203. G. A. Dvorkin, and E. I. Golub, Biofizika, 8: 301–307 (1963Google Scholar
  204. E. I. Golub, G. A. Dvorkin, and V. G. Nazarenko, Biokhimiya, 28:1041–1046 (1963)Google Scholar
  205. E. I. Golub, G. A. Dvorkin, and V. G. Nazarenko, [Biochemistry (USSR), 28: 769–773 (1963)].Google Scholar
  206. 144.
    N. Ise, M. Eigen, and G. Schwarz, Biopolymers, 1:343–352 (1963).CrossRefGoogle Scholar
  207. 145.
    C. Houssier, and E. Fredericq, Biochim. Bíophys. Acta, 88:450–452 (1964).Google Scholar
  208. 146.
    N. C. Stellwagen, Ch. 18 Electro-Optics of Polynucleotides and Nucleic Acids, in: “Molecular Electro-Optics, Part 2. Applications to Biopolymers, C. T. O’Konski, ed., Marcel Dekker, Inc., pp. 645–683 (1978).Google Scholar
  209. 147.
    N. A. Tolstoi, Zh. Eksperim. i Teor. Fiz., 19:319–327 (1949)Google Scholar
  210. N. A. Tolstoi, and P. P. Feofilov, Zh. Eksperim. i Tero. Fiz., 19:421–440 (1949).Google Scholar
  211. 148.
    P. A. Winsor, J. Colloid Sci., 10:101–106 (1955).CrossRefGoogle Scholar
  212. 149.
    T. G. Scheffer, and H. Gruler, Ch. 22 Electro-Optics of Liquid Crystals, in: “Molecular Electro-Optics, Part 1. Theory and Methods, 67—T. O’Konski, ed., Marcel Dekker, Inc., New York, pp. 761–818 (1976).Google Scholar
  213. 150.
    C. T. O’Konski, ed., Molecular Electro-optics, Part 1, Theory and Methods, M. Dekker, Inc., New York (1976)Google Scholar
  214. C. T. O’Konski, ed., Molecular Electro-optics, Part 2 Applications to Biopolymers, M. Dekker, Inc. New York (1978). (22 Chapters by contributing authors).Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Chester T. O’Konski
    • 1
  1. 1.Department of ChemistryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations