Physiological Background of Hearing Prostheses

  • Wolf D. Keidel


There have been many efforts to help completely deaf people with prostheses which would allow them to communicate verbally with other people. All the requirements for such a type of auditory prosthesis have so far not been fulfilled, however. One of the main reasons for this failure is the great complexity of the auditory stimuli used by nature for conveying spoken information from one subject to another. The language phonemes, as they have been labeled, are not only remarkably complex with respect to their frequency distribution, but they also change in time and intensity with respect to the different components of the sound spectra used as stimuli for speech communication. One of the first to clearly show the complexity of auditory stimuli of this type was Licklider (1951). He gave an example of a spoken word in a three-dimensional plot where the abscissa indicates time, the rear ordinate the frequency, increasing from front to rear, and the third ordinate, perpendicular in direction, the intensity of each component. Such a figure looks like the skyline of Manhattan and makes very clear the extreme complexity of a spoken phoneme or word.


Auditory Stimulus Auditory System Intensity Function Cochlear Implant Auditory Nerve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Békésy, G. v., 1929, Zur Theorie des Hörens. Über die Bestimmung des einem reinen Tonempfinden entsprechenden Erregungsgebietes der Basilarmembran vermittels Ermüdungserscheinungen, Physik. Z., 30: 115.Google Scholar
  2. Biber, K.-W., 1961, Ein neues Verfahren zur Sprachkommunikation über die menschliche Haut, Diss. Erlangen.Google Scholar
  3. Burian, K., Hochmair, E., Hochmair-Desoyer, I. and Lessei, M. R., 1979, Designing of and experience with multichannel cochlear implants, Acta Otolaryngol., 87: 190–195.PubMedCrossRefGoogle Scholar
  4. Burian, K., Hochmair, E., Hochmair-Desoyer, I. and Lessel, M. R., 1980, Electrical stimulation with multichannel electrodes in deaf patients, Audiology, 19: 128–136.PubMedCrossRefGoogle Scholar
  5. David, E., 1972, Elektronisches Analogmodell der Verarbeitung akustischer Information in Organismen, Habil. schr., Erlangen.Google Scholar
  6. David, E., Finkenzeller, P., Kallert, S. and Keidel, W. D., 1969, Reizfrequenzkorrelierte untersetzte neuronale Entladungs-Periodizität im Colliculus inferior und im Corpus geniculatum mediale, Pflugers Arch., 309: 11–20.PubMedCrossRefGoogle Scholar
  7. Evans, E. F., 1972, The frequency response and other properties of single fibres in the guinea-pig cochlear nerve, J. Physiol. Lond., 226: 263–287.PubMedGoogle Scholar
  8. Finkenzeller, P., Thumfart, W. and Fellner, E., 1979, Encoding processes of speech sounds in the auditory system, in: “Hearing mechanisms and speech”, O. D. Creutzfeldt, H. Scheich and Ch. Schreiner, eds., Göttingen.Google Scholar
  9. Helmholtz, H. v., 1856, “Handbuch der physiologischen Optik”, Vieweg, Leipzig.Google Scholar
  10. Keidel, W. D., Keidel, Ü. O., Kiang, N. Y.-S. and Frishkopf, L., 1958, Time course of adaptation of evoked responses from the cat’s somes thetic and auditory system, Q. Prog. Rep. Res. Lab. Electron. MIT 48: 121.Google Scholar
  11. Keidel, W. D., 1961, Rankes Adaptationstheorie, Z. Biol., 112: 411–425.PubMedGoogle Scholar
  12. Keidel, W. D., 1968, Electrophysiology of vibratory perception, in: “Contributions to sensory physiology”, Vol. 3, 1–79, W. D. Neff, ed., Academic Press, New York.Google Scholar
  13. Keidel, W. D., 1969, Informationsphysiologische Aspekte des Hörens, Studium gen., 22: 49–82.Google Scholar
  14. Keidel, W. D., Innitzer, J., Neuhäuser, G. and Plattig, K. H., 1973, Electroencephalographical audiometry of the new-born, J. fr. ORL, 22: 671–683.Google Scholar
  15. Keidel, W. D., 1974, The cochlear model in skin stimulation, in: “Proceed. Conf. on Vibrotactile Communication”, Psychonomic Society, Austin.Google Scholar
  16. Kiang, N. Y.-S., 1965, “Discharge patterns of single fibers in the cat’s auditory nerve”, MIT Press, Cambridge.Google Scholar
  17. Kiang, N. Y.-S. and Moxon, E. C., 1972, Physiological considerations in artificial stimulation of the inner ear, Ann. Otol. Rhinol. Lar., 81: 714–731.Google Scholar
  18. Kiang, N. Y.-S., Eddington, D. K. and Delgutte, B., 1979, Fundamental considerations in designing auditory implants, Acta Otolaryngol., 87: 204–218.PubMedCrossRefGoogle Scholar
  19. König and Brodhun, 1889, Sber. berl. Akad. Wiss. 917 (1888); 641.Google Scholar
  20. Kusch, H., 1971, Ein neues Verfahren zur Verbesserung der Sprache in Heliumatmosphäre, Acustica, 25: 42–46.Google Scholar
  21. Licklider, J. G. R., 1951, Basic correlates of the auditory stimulus, in: “Handbook of experimental psychology”, pp. 985–1040, S. S. Stevens, ed., Wiley, New York.Google Scholar
  22. Merzenich, M. M., White, M., Vivion, M. C., Leake-Jones, P. A. and Walsh S., 1979, Some considerations of multichannel electrical stimulation of the auditory nerve in the profoundly deaf: interfacing electrode arrays with the auditory nerve array, Acta Otolaryngol., 87: 196–203.PubMedCrossRefGoogle Scholar
  23. Meyer-Eppler, W., 1950, Die Spektralanalyse der Sprache, Z. Phon., 4: 240.Google Scholar
  24. Rose, J. E., Brugge, J. F., Anderson, D. J. and Hind, J. E., 1967, Phase-locked response to low-frequency tones in single auditory nerve fibers of the squirrel monkey, J. Neurophysiol., 30: 769–793.PubMedGoogle Scholar
  25. Rose, J. E., Hind J. E., Anderson, D. J. and Brugge, J. F., 1971, Some effects of stimulus intensity on response of auditory nerve fibers in the squirrel monkey, J. Neurophysiol., 34: 685–699.PubMedGoogle Scholar
  26. Simmons, F. B., Mathews, R. G., Walker, M. G. and White, R. L., 1979, A functioning multichannel auditory nerve stimulator, Acta Otolaryngol., 87: 170–175.PubMedCrossRefGoogle Scholar
  27. Stange, G., 1972, Klinische Ergebnisse einer objectiven Audiometrie beim Säugling und Kleinkind, Bul1. Audiophonol., Suppl.Google Scholar
  28. Stevens, S. S., 1964, The psychophysics of sensory function, in: “Sensory communication”, W. Rosenblith, ed., MIT Press, Cambridge.Google Scholar
  29. Tunturi, A. R., 1952, A difference in the representation of auditory signals for the left and right ear in the isofrequency contours of right middle ectosylvian auditory cortex of the dog, Am. J. Physiol., 168: 712–727.PubMedGoogle Scholar
  30. Walsh, S. M., Merzenich, M. M., Schindler, R. A. and Leake-Jones, P. A., 1980, Some practical considerations in development of multichannel scala tympani prostheses, Audiology, 19: 164–175.PubMedCrossRefGoogle Scholar
  31. Wever, E. G., 1949, “Theory of hearing”, Wiley, New York.Google Scholar
  32. Wien, M., 1905, “Ein Bedenken gegen die Helmholtzsche Resonanztheorie des Hörens”, Festschrift für A. Wüllner, Teuber, Leipzig.Google Scholar
  33. Zollner, F. and Keidel, W. D., 1963, Gehörvermittlung durch elektrische Erregung des Nervus acusticus, Arch. Ohr.-Nas.-Kehlk. Heilk., 181: 216–223.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Wolf D. Keidel
    • 1
  1. 1.Institute of Physiology and BiocyberneticsUniversity of Erlangen-NürnbergErlangenGermany

Personalised recommendations