Advertisement

Input — Dependent 2-Deoxy-D-Glucose Uptake in the Central Auditory System of Rana Temporaria

  • H. Flohr
  • R. Ammelburg
  • H. Kortmann
  • W. Elsen

Abstract

The (14C)-deoxyglucose — technique developed by Sokoloff et al. (1977), can be used to quantify regional cerebral energy metabolism in specific discrete structures of the brain. It had been used successfully to analyse the relationship between sensory input and patterned neuronal activity in different systems. For instance, Sokoloff (1975) and Kennedy et al. (1975) studied the metabolic activity in the visual system of the rhesus monkey with intact binocular vision as well as after uni- and bilateral eye occlusion. They found that the pattern of 2-DG uptake closely coincided with the changes in functional activity expected from known properties of the visual system. They were able to demonstrate ocular dominance columns in the striate cortex originally described by Hubel and Wiesel (1962 and 1972) by means of electrophysiological and autoradiographic studies on the visual cortex of the cat and the macaque monkey. Hubel et al. (1978) used the 2-DG technique to demonstrate orientation columns in the monkey’s visual cortex. Through olfactory stimulation with specific odours it has been shown that specific spatial patterns of neuronal activity participate in coding the sensory information.

Keywords

Auditory System Macaque Monkey Rana TEMPORARIA Guinea Fowl Olfactory Stimulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Capranica, R. R., 1976, Morphology and physiology of the auditory system, in: “Frog neurobiology”, Llinás, R. and Precht, W., eds., Springer, Berlin.Google Scholar
  2. Creutzfeldt, O. D., 1975, Neurophysiological correlates of different functional states of the brain, in: “Brain work”, D. H. Ingvar and N. A. Lassen, eds., Kopenhagen.Google Scholar
  3. Ewald, J. R., 1892, Physiologische Untersuchungen über das Endorgan des Nervus octavus, Bergmann, Wiesbaden.Google Scholar
  4. Feng, A. S., 1975, Sound localization in anurans: An electrophysiological and behavioral study, Thesis, Ph. D. Degree, Cornell University, Ithaca, New York.Google Scholar
  5. Hubel, D. H. and Wiesel, T. N., 1962, Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex, J. Physiol., 160: 106–154.PubMedGoogle Scholar
  6. Hubel, D. H. and Wiesel, T. N., 1972, Laminar and columnar distribution of geniculo-cortical fibers in the macaque monkey, J. Comp. Neurol., 146: 421–450.PubMedCrossRefGoogle Scholar
  7. Hubel, D. H., Wiesel, T. N. and Stryker, M. P., 1978, Anatomical demonstration of orientation columns in macaque monkey, J. Comp. Neurol., 177: 361–379.PubMedCrossRefGoogle Scholar
  8. Kennedy, C., des Rosiers, M. H., Jehle, J. W., Reivich, M., Sharpe, F. and Sokoloff, L., 1975, Mapping of functional neural pathways by autoradiographic survey of local metabolic rate with (14C)deoxyglucose, Science, 187: 850–853.PubMedCrossRefGoogle Scholar
  9. Krnjević, K., 1975, Neuronal metabolism and electrical activity, in: “Brain work”, D. H. Ingvar and N. A. Lassen, eds., Kopenhagen.Google Scholar
  10. Potter, H. D., 1965, Mesencephalic auditory region of the bull frog, J. Neurophysiol., 28: 1132–1154.PubMedGoogle Scholar
  11. Sharp, F. R., 1976, Activity related increases of glucose utilization associated with reduced incorporation of glucose into its derivates, Brain Res., 107: 663–666.PubMedCrossRefGoogle Scholar
  12. Sharp, F. R., Kauer, J. S. and Shepherd, G. M., 1975, Local sites of activity related glucose metabolism in rat olfactory bulb during olfactory stimulation, Brain Res., 98: 596–600.PubMedCrossRefGoogle Scholar
  13. Scheich, H., Bonke, B. A., Bonke, D. and Langner, G., 1979, Functional organization of some auditory nuclei in the guinea fowl demonstrated by the 2-deoxyglucose technique, Cell Tissue Res., 204: 17–27.PubMedCrossRefGoogle Scholar
  14. Sokoloff, L., 1975, Influence of functional activity on local cerebral glucose utilization, in: “Brain work”, D. H. Ingvar and N. A. Lassen, eds., Kopenhagen.Google Scholar
  15. Sokoloff, L., 1977, Relation between physiological function and energy metabolism in the central nervous system, J. Neurochem., 29: 13–26.PubMedCrossRefGoogle Scholar
  16. Sokoloff, L., Reivich, M., Kennedy, C., des Rosiers, M. H., Patlak, C. S., Pettigrew, K. D., Sakurada, O., Skinohara, M., 1977, The (C)deoxyglucose method for the measurement of local cerebral glucose utilization: Theory, procedure and normal values in the conscious and anaesthetized albino rat, J. Neuro-chem., 28: 897–916.Google Scholar
  17. Wiesel, T. N., Hubel, D. H. and Lam, D. M. K., 1974, Autoradiographic demonstration of ocular-dominance columns in the monkey striate cortex by means of neuronal transport, Brain Res., 79: 273–279.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • H. Flohr
    • 1
  • R. Ammelburg
    • 1
  • H. Kortmann
    • 1
  • W. Elsen
    • 1
  1. 1.Department of NeurobiologyUniversity of BremenBremenGermany

Personalised recommendations