The Effects of Industrial Wastes on Marine Phytoplankton

  • Lynda S. Murphy
  • Peter R. Hoar
  • Rebecca A. Belastock
Part of the Marine Science book series (MR, volume 12)


Nineteen clones in three marine phytoplankton species were used in bioassays of DuPont Grasselli waste. We determined that low doses of waste stimulate growth; higher concentrations were inhibitory. The transition from stimulation to inhibition in culture occurs at approximately the highest concentration that is sustained in the environment. Clones from polluted estuaries are less sensitive to the waste than are clones of the same species from other environments.


Continental Slope Marine Phytoplankton Chemical Stress Skeletonema Costatum Emiliania Huxleyi 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Dunstan, W. M., L. P. Atkinson, and J. Natoli (1975) Stimulation and inhibition of phytoplankton growth by low molecular weight hydrocarbons. Mar. Biol., 31, 305–310.CrossRefGoogle Scholar
  2. Fisher, N. S. (1977) On the differential sensitivity of estuarine and open-ocean diatoms to exotic chemical stress. Amer. Natur., 111, 871–895.CrossRefGoogle Scholar
  3. Fisher, N. S., E. J. Carpenter, C. C. Remsen, and C. F. Wurster (1974) Effects of PCB on interspecific competition in natural and gnotobiotic phytoplankton communities in continuous and batch cultures, Microb. Ecol., 1, 39–50.Google Scholar
  4. Fisher, N. S., L. B. Graham, E. J. Carpenter, and C. F. Wurster (1973) Geographic differences in phytoplankton sensitivity to PCBs. Nature, 241, 548–549.CrossRefGoogle Scholar
  5. Guillard, R. R. L. and J. H. Ryther (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can. J. Microbiol., 8, 229–239.CrossRefGoogle Scholar
  6. Jensen, A., B. Rystad, and S. Melsom (1974) Heavy metal tolerance of marine phytoplankton. I. The tolerance of three algal species to zinc in coastal seawater. J. Exp. Marine Biol. Ecol., 15, 145–157.CrossRefGoogle Scholar
  7. Kohn, B. and G. T. Rowe (1978) Dispersion of two liquid industrial wastes dumped at Deep Water Dumpsite 106, off the coast of New Jersey, U.S.A. Final report submitted to Ocean Dumping Program., Rockville, Md.Google Scholar
  8. Mosser, J. L., N. S. Fisher, and C. F. Wurster (1972) Polychlorinated biphenyls and DDT alter species composition in mixed cultures of algae. Science, 176, 533–535.CrossRefGoogle Scholar
  9. Murphy, L. S. (1978) Biochemical taxonomy of marine phytoplankton by electrophoresis of enzymes. II. Loss of heterozygosity in clonal cultures of Thalassiosira pseudonana and Skeletonema costatum. J. Phycol., 14, 247–250.CrossRefGoogle Scholar
  10. Murphy, L. S. and R. R. L. Guillard (1976) Biochemical taxonomy of marine phytoplankton by electrophoresis of enzymes. I. The centric diatoms Thalassiosira pseudonana and T. fluviatilis. J. Phycol., 12, 9–13.Google Scholar
  11. Murphy, L. S., R. R. L. Guillard, H.-t. Lee, and L. E. Brand (1978) Distribution of electromorphs and growth rate characteristics in isolates of the diatom Thalassiosira pseudonana from the neritic-oceanic boundary. J. Phycol., 14 (Suppl.), 26.Google Scholar
  12. Slobodkin, L. B. and H. L. Sanders (1969) On the contribution of environmental predictability to species diversity. Brookhaven Symp. Biol., 22, 82–95.Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Lynda S. Murphy
    • 3
  • Peter R. Hoar
    • 2
  • Rebecca A. Belastock
    • 1
  1. 1.Woods Hole Oceanographic InstitutionWoods HoleUSA
  2. 2.Amherst CollegeAmherstUSA
  3. 3.Bigelow Laboratory for Ocean SciencesWest Boothbay HarborUSA

Personalised recommendations